Skip to main content

Domain Generalization with Global Sample Mixup

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13806))

Included in the following conference series:

  • 1532 Accesses

Abstract

Deep models have demonstrated outstanding ability in various computer vision tasks but are also notoriously known to generalize poorly when encountering unseen domains with different statistics. To alleviate this issue, in this technical report we present a new domain generalization method based on training sample mixup. The main enabling factor of our superior performance lies in the global mixup strategy across the source domains, where the batched samples from multiple graphic devices are mixed up for a better generalization ability. Since the domain gap in NICO datasets is mainly due to the intertwined background bias, the global mix strategy decreases such gap to a great extent by producing abundant mixed backgrounds. Besides, we have conducted extensive experiments on different backbones combined with various data augmentation to study the generalization performance of different model structures. Our final ensembled model achieved 74.07% on the test set and took the 3rd place according to the image classification accuracy (Acc.) in NICO Common Context Generalization Challenge 2022.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010, pp. 177–186. Springe, Chamr (2010). https://doi.org/10.1007/978-3-7908-2604-3_16

  2. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop,. pp. 702–703 (2020)

    Google Scholar 

  3. Dou, Q., Coelho de Castro, D., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. In: 32nd Proceedings on Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  4. Fu, Y., et al.: Partial feature selection and alignment for multi-source domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  5. Gong, R., Li, W., Chen, Y., Dai, D., Van Gool, L.: DLOW: domain flow and applications. Int. J. CardioVasc .Imaging 129(10), 2865–2888 (2021)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., Wilson, A.: Averaging weights leads to wider optima and better generalization. In: 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018 (2018)

    Google Scholar 

  9. Kang, G., Jiang, L., Wei, Y., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for single-and multi-source domain adaptation. IEEE trans. Pattern Anal. Mach. Intell. 44, 1793–1804 (2020)

    Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: 25th Proceedings on Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: 25th Advances in Neural Information Processing Systems: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held 3–6 December 2012, Lake Tahoe, Nevada, United States, pp. 1106–1114 (2012)

    Google Scholar 

  12. Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.Z., Hospedales, T.M.: Episodic training for domain generalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1446–1455 (2019)

    Google Scholar 

  13. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  14. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: ICML, pp. 97–105 (2015)

    Google Scholar 

  15. Lu, Y., Luo, Y., Zhang, L., Li, Z., Yang, Y., Xiao, J.: Bidirectional self-training with multiple anisotropic prototypes for domain adaptive semantic segmentation. arXiv preprint arXiv:2204.07730 (2022)

  16. Luo, Y., Liu, P., Guan, T., Yu, J., Yang, Y.: Significance-aware information bottleneck for domain adaptive semantic segmentation. In: ICCV, pp. 6778–6787 (2019)

    Google Scholar 

  17. Luo, Y., Liu, P., Guan, T., Yu, J., Yang, Y.: Adversarial style mining for one-shot unsupervised domain adaptation. In: NeurIPS, pp. 20612–20623 (2020)

    Google Scholar 

  18. Luo, Y., Liu, P., Zheng, L., Guan, T., Yu, J., Yang, Y.: Category-level adversarial adaptation for semantic segmentation using purified features. Trans. Pattern Anal. Mach. Intell. 44, 3940– 3956 (2021)

    Google Scholar 

  19. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2507–2516 (2019)

    Google Scholar 

  20. Luo, Y., Zheng, Z., Zheng, L., Guan, T., Yu, J., Yang, Y.: Macro-micro adversarial network for human parsing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 424–440. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_26

    Chapter  Google Scholar 

  21. Maaten, L.v.d., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(November), 2579–2605 (2008)

    Google Scholar 

  22. Matsuura, T., Harada, T.: Domain generalization using a mixture of multiple latent domains. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11749–11756 (2020)

    Google Scholar 

  23. Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: enhancing learning and generalization capacities via IBN-Net. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 484–500. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_29

    Chapter  Google Scholar 

  24. Paszke, A., et al.: Automatic differentiation in PyTorch. In: Neurips-W (2017)

    Google Scholar 

  25. Pei, Z., Cao, Z., Long, M., Wang, J.: Multi-adversarial domain adaptation. In: Thirty Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  26. Peng, X., Huang, Z., Sun, X., Saenko, K.: Domain agnostic learning with disentangled representations. In: ICML, pp. 5102–5112 (2019)

    Google Scholar 

  27. Qiao, F., Peng, X.: Uncertainty-guided model generalization to unseen domains. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6790–6800 (2021)

    Google Scholar 

  28. Qiao, F., Zhao, L., Peng, X.: Learning to learn single domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12556–12565 (2020)

    Google Scholar 

  29. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (May 2015)

    Google Scholar 

  31. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015. pp. 1–9. IEEE Computer Society (2015)

    Google Scholar 

  32. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  33. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  34. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

  35. Wang, J., Lan, C., Liu, C., Ouyang, Y., Zeng, W., Qin, T.: Generalizing to unseen domains: a survey on domain generalization. arXiv preprint arXiv:2103.03097 (2021)

  36. Wang, J., Jiang, J.: Learning across tasks for zero-shot domain adaptation from a single source domain. Trans. Pattern Anal. Mach. Intell. 44, 6264– 6279 (2021)

    Google Scholar 

  37. Wang, T., Zhou, C., Sun, Q., Zhang, H.: Causal attention for unbiased visual recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3091–3100 (2021)

    Google Scholar 

  38. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. International Conference on Learning Representations (2018). https://openreview.net/forum?id=r1Ddp1-Rb

  39. Zhang, Q., Zhang, J., Liu, W., Tao, D.: Category anchor-guided unsupervised domain adaptation for semantic segmentation. In: NeurIPS (2019)

    Google Scholar 

  40. Zhang, X., Cui, P., Xu, R., Zhou, L., He, Y., Shen, Z.: Deep stable learning for out-of-distribution generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5372–5382 (2021)

    Google Scholar 

  41. Zhang, X., Zhou, L., Xu, R., Cui, P., Shen, Z., Liu, H.: Domain-irrelevant representation learning for unsupervised domain generalization. arXiv preprint arXiv:2107.06219 (2021)

  42. Zhang, X., Zhou, L., Xu, R., Cui, P., Shen, Z., Liu, H.: Towards unsupervised domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4910–4920 (2022)

    Google Scholar 

  43. Zhao, Y., et al.:Learning to generalize unseen domains via memory-based multi-source meta-learning for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6277–6286 (2021)

    Google Scholar 

  44. Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Change Loy, C.: Domain generalization: A survey. arXiv preprint arXiv:2103.02503 (2021)

  45. Zhu, B., Niu, Y., Hua, X.S., Zhang, H.: Cross-domain empirical risk minimization for unbiased long-tailed classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 3589–3597 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research & Development Project of China (2021ZD0110700), the National Natural Science Foundation of China (U19B2043, 61976185), Zhejiang Natural Science Foundation (LR19F020002), Zhejiang Innovation Foundation (2019R52002), and the Fundamental Research Funds for the Central Universities (226-2022-00051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yawei Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Y., Luo, Y., Pan, A., Mao, Y., Xiao, J. (2023). Domain Generalization with Global Sample Mixup. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13806. Springer, Cham. https://doi.org/10.1007/978-3-031-25075-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25075-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25074-3

  • Online ISBN: 978-3-031-25075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics