Skip to main content

Personalization of AI Models Based on Federated Learning for Driver Stress Monitoring

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

To improve the comfort of car occupants or to develop control laws for autonomous vehicles or Advanced Driver-Assistance Systems, it is essential to monitor drivers’ internal state and automatically detect stressful situations. In this paper, we propose a driver’s stress monitoring system based on the analysis of physiological signals. To consider the individual differences between drivers, we propose a training strategy based on federated learning that favors examples in training set from drivers with the same profile as the driver we want to monitor. This approach allows us to personalize the prediction model for a target-driver and significantly improves performance compared to the classical paradigm that maximizes the average performance for all the users in a given dataset. This paper shows that this personalization strategy improves the performance of the stress estimation on the public database AffectiveROAD [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El Haouij, N., Poggi, J.-M., Sevestre-Ghalila, S., Ghozi, R.,Jaïdane, M.: Affectiveroad system and database to assess driver’s attention. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, pp. 800–803 (2018)

    Google Scholar 

  2. Gordon, R.A.: Social desirability bias: a demonstration and technique for its reduction. Teach. Psychol. 14(1), 40–42 (1987)

    Article  Google Scholar 

  3. Lopez-Martinez, D., El-Haouij, N., Picard, R.: Detection of real-world driving-induced affective state using physiological signals and multi-view multi-task machine learning. In: 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), pp. 356–361. IEEE (2019)

    Google Scholar 

  4. Giannakakis, G., Grigoriadis, D., Giannakaki, K., Simantiraki, O., Roniotis, A., Tsiknakis, M.: Review on psychological stress detection using biosignals. IEEE Trans. Affect. Comput. 13(1), 440–460 (2022)

    Article  Google Scholar 

  5. Lan-lan Chen, Yu., Zhao, P.Y., Zhang, J., Zou, J.: Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers. Expert Syst. Appl. 85, 279–291 (2017)

    Article  Google Scholar 

  6. Burykin, A., Peck, T., Buchman, T.G.: Using “off-the-shelf’’ tools for terabyte-scale waveform recording in intensive care: computer system design, database description and lessons learned. Comput. Methods Programs Biomed. 103(3), 151–160 (2011)

    Article  Google Scholar 

  7. Cosgriff, C.V., Celi, L.A., Stone, D.J.: Critical care, critical data. Biomed. Eng. Comput. Biol. 10, 1179597219856564 (2019)

    Article  Google Scholar 

  8. Chassang, G.: The impact of the EU general data protection regulation on scientific research. Ecancermedicalscience 11, 709 (2017)

    Article  Google Scholar 

  9. Taylor, S., Jaques, N., Nosakhare, E., Sano, A., Picard, R.: Personalized multitask learning for predicting tomorrow’s mood, stress, and health. IEEE Trans. Affect. Comput. 11(2), 200–213 (2017)

    Article  Google Scholar 

  10. Chu, W.-S., la Torre, F.D., Cohn, J.F.: Selective transfer machine for personalized facial expression analysis. IEEE Trans. Pattern Anal. Mach. Intell. 39(3), 529–545 (2016)

    Article  Google Scholar 

  11. Bellmann, P., Thiam, P., Schwenker, F.: Person identification based on physiological signals: Conditions and risks. In: ICPRAM, pp. 373–380 (2020)

    Google Scholar 

  12. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  13. Liu, X., Zhang, M., Jiang, Z., Patel, S., McDuff, D.: Federated remote physiological measurement with imperfect data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2155–2164 (2022)

    Google Scholar 

  14. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  15. Bhattacharyya, A.: On some analogues of the amount of information and their use in statistical estimation. Sankhyā: Indian J. Stat. 1–14 (1946)

    Google Scholar 

  16. Fischer, B., Modersitzki, J.: FLIRT: a flexible image registration toolbox. In: Gee, J.C., Maintz, J.B.A., Vannier, M.W. (eds.) WBIR 2003. LNCS, vol. 2717, pp. 261–270. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39701-4_28

    Chapter  MATH  Google Scholar 

  17. Greco, A., Valenza, G., Lanata, A., Scilingo, E.P., Citi, L.: cvxeda: a convex optimization approach to electrodermal activity processing. IEEE Trans. Biomed. Eng. 63(4), 797–804 (2015)

    Google Scholar 

  18. Lutin, E., Hashimoto, R., De Raedt, W., Van Hoof, C.: Feature extraction for stress detection in electrodermal activity. In: BIOSIGNALS, pp. 177–185 (2021)

    Google Scholar 

  19. Zontone, P., Affanni, A., Bernardini, R., Piras, A., Rinaldo, R.: Stress detection through electrodermal activity (EDA) and electrocardiogram (ECG) analysis in car drivers. In: 2019 27th European Signal Processing Conference (EUSIPCO), pp. 1–5. IEEE (2019)

    Google Scholar 

  20. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Mundry, R., Sommer, C.: Discriminant function analysis with nonindependent data: consequences and an alternative. Anim. Behav. 74(4), 965–976 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houda Rafi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rafi, H., Benezeth, Y., Reynaud, P., Arnoux, E., Song, F.Y., Demonceaux, C. (2023). Personalization of AI Models Based on Federated Learning for Driver Stress Monitoring. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13806. Springer, Cham. https://doi.org/10.1007/978-3-031-25075-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25075-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25074-3

  • Online ISBN: 978-3-031-25075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics