Skip to main content

Multi-scale Motion-Aware Module for Video Action Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13806))

Included in the following conference series:

  • 1493 Accesses

Abstract

Due to the lengthy computing time for optical flow, recent works have proposed to use the correlation operation as an alternative approach to extracting motion features. Although using correlation operations shows significant improvement with negligible FLOPs, it introduces much more latency per FLOP than convolution operations and increases noticeable latency as a larger searching patch is applied. Nonetheless, shrinking the searching patch in correlation operation is doomed to degrade its performance owing to the inability to capture larger displacements. In this paper, we propose an effective and low-latency Multi-Scale Motion-Aware (MSMA) module. It uses smaller searching patches at different scales for efficiently extracting motion features from large displacements. It can be installed into and generalizes well on different CNN backbones. When installed into TSM ResNet-50, the MSMA module introduces \(\approx \) 17.6% more latency on NVIDIA Tesla V100 GPU, yet, it achieves state-of-the-art performance on Something-Something V1 & V2 and Diving-48.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Eng. 29(6), 33–41 (1984)

    Google Scholar 

  2. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: VIVIT: a video vision transformer. In: ICCV (2021)

    Google Scholar 

  3. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: ICML (2021)

    Google Scholar 

  4. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)

    Article  Google Scholar 

  5. Carreira, J., Noland, E., Banki-Horvath, A., Hillier, C., Zisserman, A.: A short note about kinetics-600 (2018)

    Google Scholar 

  6. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: CVPR (2017)

    Google Scholar 

  7. Chen, C.R., Fan, Q., Mallinar, N., Sercu, T., Feris, R.S.: Big-little net: an efficient multi-scale feature representation for visual and speech recognition. In: ICLR (2019)

    Google Scholar 

  8. Crasto, N., Weinzaepfel, P., Alahari, K., Schmid, C.: MARS: motion-augmented RGB stream for action recognition. In: CVPR (2019)

    Google Scholar 

  9. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: CVPR (2020)

    Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  11. Denton, E.L., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: NeurIPS (2015)

    Google Scholar 

  12. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  13. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: ICCV (2015)

    Google Scholar 

  14. Fan, L., Huang, W., Gan, C., Ermon, S., Gong, B., Huang, J.: End-to-end learning of motion representation for video understanding. In: CVPR (2018)

    Google Scholar 

  15. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: ICCV (2019)

    Google Scholar 

  16. Feng, Y., Liang, Z., Liu, H.: Efficient deep learning for stereo matching with larger image patches. In: CISP-BMEI (2017)

    Google Scholar 

  17. Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense. In: ICCV (2017)

    Google Scholar 

  18. Haoqi, F., et al.: Multiscale vision transformers. In: ICCV (2021)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  20. Hu, H., Zhang, Z., Xie, Z., Lin, S.: Local relation networks for image recognition. In: ICCV (2019)

    Google Scholar 

  21. Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  22. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. In: CVPR (2017)

    Google Scholar 

  23. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  24. Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2013)

    Article  Google Scholar 

  25. Jiang, B., Wang, M., Gan, W., Wu, W., Yan, J.: STM: spatiotemporal and motion encoding for action recognition. In: ICCV (2019)

    Google Scholar 

  26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM. 60, 84–90 (2017)

    Article  Google Scholar 

  27. Kwon, H., Kim, M., Kwak, S., Cho, M.: MotionSqueeze: neural motion feature learning for video understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 345–362. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_21

    Chapter  Google Scholar 

  28. Kwon, H., Kim, M., Kwak, S., Cho, M.: Learning self-similarity in space and time as generalized motion for video action recognition. In: ICCV (2021)

    Google Scholar 

  29. Li, Y., Ji, B., Shi, X., Zhang, J., Kang, B., Wang, L.: TEA: temporal excitation and aggregation for action recognition. In: CVPR (2020)

    Google Scholar 

  30. Li, Y., Li, Y., Vasconcelos, N.: RESOUND: towards action recognition without representation bias. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 520–535. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_32

    Chapter  Google Scholar 

  31. Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: ICCV (2019)

    Google Scholar 

  32. Lin, T., et al.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  33. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  34. Liu, X., Lee, J., Jin, H.: Learning video representations from correspondence proposals. In: CVPR (2019)

    Google Scholar 

  35. Liu, Z., et al.: Teinet: towards an efficient architecture for video recognition. In: AAAI (2020)

    Google Scholar 

  36. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  37. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  38. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)

    Google Scholar 

  39. Ng, J.Y., Choi, J., Neumann, J., Davis, L.S.: Actionflownet: learning motion representation for action recognition. In: WACV (2018)

    Google Scholar 

  40. Parmar, N., Ramachandran, P., Vaswani, A., Bello, I., Levskaya, A., Shlens, J.: Stand-alone self-attention in vision models. In: NeurIPS (2019)

    Google Scholar 

  41. Piergiovanni, A.J., Ryoo, M.S.: Representation flow for action recognition. In: CVPR (2019)

    Google Scholar 

  42. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3d residual networks. In: ICCV (2017)

    Google Scholar 

  43. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: CVPR (2018)

    Google Scholar 

  44. Shi, X., Chen, Z., Wang, H., Yeung, D., Wong, W., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: NeurIPS (2015)

    Google Scholar 

  45. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NeurIPS (2014)

    Google Scholar 

  46. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Stroud, J.C., Ross, D.A., Sun, C., Deng, J., Sukthankar, R.: D3D: distilled 3d networks for video action recognition. In: WACV (2020)

    Google Scholar 

  48. Sun, D., Yang, X., Liu, M., Kautz, J.: PWC-net: CNNs for optical flow using pyramid, warping, and cost volume. In: CVPR (2018)

    Google Scholar 

  49. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)

    Google Scholar 

  50. Sun, S., Kuang, Z., Sheng, L., Ouyang, W., Zhang, W.: Optical flow guided feature: a fast and robust motion representation for video action recognition. In: CVPR (2018)

    Google Scholar 

  51. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

  52. Taylor, G.W., Fergus, R., LeCun, Y., Bregler, C.: Convolutional learning of spatio-temporal features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 140–153. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15567-3_11

    Chapter  Google Scholar 

  53. Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: ICCV (2015)

    Google Scholar 

  54. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: CVPR (2018)

    Google Scholar 

  55. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  56. Wang, H., Tran, D., Torresani, L., Feiszli, M.: Video modeling with correlation networks. In: CVPR (2020)

    Google Scholar 

  57. Wang, L., Tong, Z., Ji, B., Wu, G.: TDN: temporal difference networks for efficient action recognition. In: CVPR (2021)

    Google Scholar 

  58. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  59. Wang, X., Girshick, R.B., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  60. Weng, J., et al.: Temporal distinct representation learning for action recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 363–378. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_22

    Chapter  Google Scholar 

  61. Xiang, X., Zhai, M., Zhang, R., Lv, N., El-Saddik, A.: Optical flow estimation using spatial-channel combinational attention-based pyramid networks. In: ICIP (2019)

    Google Scholar 

  62. Xu, J., Ranftl, R., Koltun, V.: Accurate optical flow via direct cost volume processing. In: CVPR (2017)

    Google Scholar 

  63. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: NeurIPS (2014)

    Google Scholar 

  64. Yun, S., Han, D., Chun, S., Oh, S.J., Yoo, Y., Choe, J.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: ICCV (2019)

    Google Scholar 

  65. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74936-3_22

    Chapter  Google Scholar 

  66. Zbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res. 17, 2287–2318 (2016)

    MATH  Google Scholar 

  67. Zhang, C., Gupta, A., Zisserman, A.: Temporal query networks for fine-grained video understanding. In: CVPR (2021)

    Google Scholar 

  68. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  69. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

  70. Zhao, Y., Xiong, Y., Lin, D.: Recognize actions by disentangling components of dynamics. In: CVPR (2018)

    Google Scholar 

  71. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: AAAI (2020)

    Google Scholar 

  72. Zhu, Y., Lan, Z., Newsam, S.D., Hauptmann, A.G.: Hidden two-stream convolutional networks for action recognition. In: ACCV (2018)

    Google Scholar 

  73. Zolfaghari, M., Singh, K., Brox, T.: ECO: efficient convolutional network for online video understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 713–730. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_43

    Chapter  Google Scholar 

Download references

Acknowledgments

This research is co-sponsored by ITRI and Ministry of Science and Technology (MoST). This work is also financially supported by “Center for Open Intelligent Connectivity” of “Higher Education Sprout Project” of NYCU and MOE, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huai-Wei Peng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 10843 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, HW., Tseng, YC. (2023). Multi-scale Motion-Aware Module for Video Action Recognition. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13806. Springer, Cham. https://doi.org/10.1007/978-3-031-25075-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25075-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25074-3

  • Online ISBN: 978-3-031-25075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics