Skip to main content

Image Illumination Enhancement for Construction Worker Pose Estimation in Low-light Conditions

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13807))

Included in the following conference series:

  • 2592 Accesses

Abstract

Many construction scenes feature low-light work, such as nighttime construction and tunnel construction. Poor lighting and low visibility will increase the risk of site accidents. One of the leading causes of construction accidents is unsafe worker behavior, which can be predicted via worker posture estimation. Therefore, this study proposes an Unsupervised Illumination Reflectance Estimation (UIRE-Net) framework for estimating the dark worker pose. On the basis of lightness-color consistency, in spite of ungratified illumination conditions, the “true color” of objects depends on the illumination reflectance only. The illumination reflectance estimation is monotonous to neighboring pixel differences, making the extracted features robust for worker pose estimation. In addition, the proposed UIRE-Net restores image brightness without relying on image pairs. A testing experiment based on nighttime construction workers is conducted to validate the veracity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arditi, D., Lee, D.E., Polat, G.: Fatal accidents in nighttime vs daytime highway construction work zones. J. Safety Res. 38(4), 399–405 (2007)

    Google Scholar 

  2. Chen, J., Qiu, J., Ahn, C.: Construction worker’s awkward posture recognition through supervised motion tensor decomposition. Autom. Constr. 77, 67–81 (2017)

    Article  Google Scholar 

  3. Cheng, T., Teizer, J., Migliaccio, G.C., Gatti, U.C.: Automated task-level activity analysis through fusion of real time location sensors and worker’s thoracic posture data. Autom. Constr. 29, 24–39 (2013)

    Article  Google Scholar 

  4. Coltuc, D., Bolon, P., Chassery, J.M.: Exact histogram specification. IEEE Trans. Image Process. 15(5), 1143–1152 (2006)

    Article  Google Scholar 

  5. Fu, Y., Lam, A., Sato, I., Okabe, T., Sato, Y.: Separating reflective and fluorescent components using high frequency illumination in the spectral domain. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 457–464 (2013)

    Google Scholar 

  6. Guo, C., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1780–1789 (2020)

    Google Scholar 

  7. Guo, H., Yu, Y., Skitmore, M.: Visualization technology-based construction safety management: a review. Autom. Constr. 73, 135–144 (2017)

    Article  Google Scholar 

  8. Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hong, Y., Park, S., Kim, H., Kim, H.: Synthetic data generation using building information models. Autom. Constr. 130, 103871 (2021)

    Article  Google Scholar 

  10. Hwang, J., Kim, J., Chi, S., Seo, J.: Development of training image database using web crawling for vision-based site monitoring. Autom. Constr. 135, 104141 (2022)

    Article  Google Scholar 

  11. Ibrahim, H., Kong, N.S.P.: Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(4), 1752–1758 (2007)

    Article  Google Scholar 

  12. Jiang, Y.: EnlightenGAN: deep light enhancement without paired supervision. IEEE Trans. Image Process. 30, 2340–2349 (2021)

    Article  Google Scholar 

  13. Jobson, D.J., Rahman, Z.u., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Google Scholar 

  14. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)

    Article  Google Scholar 

  15. Land, E.H., McCann, J.J.: Lightness and retinex theory. Josa 61(1), 1–11 (1971)

    Google Scholar 

  16. Lee, C., Lee, C., Kim, C.S.: Contrast enhancement based on layered difference representation of 2D histograms. IEEE Trans. Image Process. 22(12), 5372–5384 (2013)

    Article  Google Scholar 

  17. Li, J., Wang, C., Zhu, H., Mao, Y., Fang, H.S., Lu, C.: CrowdPose: efficient crowded scenes pose estimation and a new benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10863–10872 (2019)

    Google Scholar 

  18. Liu, M., Han, S., Lee, S.: Potential of convolutional neural network-based 2D human pose estimation for on-site activity analysis of construction workers. In: Computing in Civil Engineering 2017, pp. 141–149 (2017)

    Google Scholar 

  19. Lv, F., Li, Y., Lu, F.: Attention guided low-light image enhancement with a large scale low-light simulation dataset. arXiv preprint arXiv:1908.00682 (2019)

  20. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3d human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2640–2649 (2017)

    Google Scholar 

  21. Premerlani, W., Bizard, P.: Direction cosine matrix IMU: Theory. Diy Drone: USA 1 (2009)

    Google Scholar 

  22. Seo, J., Lee, S.: Automated postural ergonomic risk assessment using vision-based posture classification. Autom. Constr. 128, 103725 (2021)

    Article  Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  24. Soltani, M.M., Zhu, Z., Hammad, A.: Automated annotation for visual recognition of construction resources using synthetic images. Autom. Constr. 62, 14–23 (2016)

    Article  Google Scholar 

  25. Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)

    Article  Google Scholar 

  26. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  27. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 648–656 (2015)

    Google Scholar 

  28. Valero, E., Sivanathan, A., Bosché, F., Abdel-Wahab, M.: Musculoskeletal disorders in construction: a review and a novel system for activity tracking with body area network. Appl. Ergon. 54, 120–130 (2016)

    Article  Google Scholar 

  29. Yan, X., Li, H., Li, A.R., Zhang, H.: Wearable IMU-based real-time motion warning system for construction workers’ musculoskeletal disorders prevention. Autom. Constr. 74, 2–11 (2017)

    Article  Google Scholar 

  30. Yan, X., Li, H., Wang, C., Seo, J., Zhang, H., Wang, H.: Development of ergonomic posture recognition technique based on 2D ordinary camera for construction hazard prevention through view-invariant features in 2D skeleton motion. Adv. Eng. Inform. 34, 152–163 (2017)

    Article  Google Scholar 

  31. Yang, J., Shi, Z., Wu, Z.: Vision-based action recognition of construction workers using dense trajectories. Adv. Eng. Inform. 30(3), 327–336 (2016)

    Article  Google Scholar 

  32. Yu, Y., Guo, H., Ding, Q., Li, H., Skitmore, M.: An experimental study of real-time identification of construction workers’ unsafe behaviors. Autom. Constr. 82, 193–206 (2017)

    Article  Google Scholar 

  33. Yu, Y., Li, H., Yang, X., Kong, L., Luo, X., Wong, A.Y.: An automatic and non-invasive physical fatigue assessment method for construction workers. Autom. Constr. 103, 1–12 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yantao Yu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6061 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X., Yu, Y. (2023). Image Illumination Enhancement for Construction Worker Pose Estimation in Low-light Conditions. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13807. Springer, Cham. https://doi.org/10.1007/978-3-031-25082-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25082-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25081-1

  • Online ISBN: 978-3-031-25082-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics