Abstract
The detection of cracks is a crucial task in monitoring structural health and ensuring structural safety. The manual process of crack detection is time-consuming and subjective to the inspectors. Several researchers have tried tackling this problem using traditional Image Processing or learning-based techniques. However, their scope of work is limited to detecting cracks on a single type of surface (walls, pavements, glass, etc.). The metrics used to evaluate these methods are also varied across the literature, making it challenging to compare techniques. This paper addresses these problems by combining previously available datasets and unifying the annotations by tackling the inherent problems within each dataset, such as noise and distortions. We also present a pipeline that combines Image Processing and Deep Learning models. Finally, we benchmark the results of proposed models on these metrics on our new dataset and compare them with state-of-the-art models in the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akagic, A., Buza, E., Omanovic, S., Karabegovic, A.: Pavement crack detection using Otsu thresholding for image segmentation. In: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1092–1097. IEEE (2018)
Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation (2021). https://doi.org/10.48550/ARXIV.2105.05537, https://arxiv.org/abs/2105.05537
Caron, M., et al.: Emerging properties in self-supervised vision transformers (2021). https://doi.org/10.48550/ARXIV.2104.14294, https://arxiv.org/abs/2104.14294
Chambo, S.: Aiglern. https://www.irit.fr/Sylvie.Chambon/Crack/Detection/Database.htm
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs (2016). https://doi.org/10.48550/ARXIV.1606.00915, https://arxiv.org/abs/1606.00915
Choi, W., Cha, Y.J.: SDDnet: real-time crack segmentation. IEEE Trans. Industr. Electron. 67(9), 8016–8025 (2019)
Chollet, F.: Xception: deep learning with depthwise separable convolutions (2016). https://doi.org/10.48550/ARXIV.1610.02357, https://arxiv.org/abs/1610.02357
Dais, D., İhsan Engin Bal, Smyrou, E., Sarhosis, V.: Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning. Autom. Constr. 125, 103606 (2021). https://doi.org/10.1016/j.autcon.2021.103606, https://www.sciencedirect.com/science/article/pii/S0926580521000571
Dorafshan, S., Thomas, R., Maguire, M.: SDnet 2018: an annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks. Data Brief 21 (2018). https://doi.org/10.1016/j.dib.2018.11.015
Eisenbach, M., et al.: How to get pavement distress detection ready for deep learning? A systematic approach. In: International Joint Conference on Neural Networks (IJCNN), pp. 2039–2047 (2017)
Fan, R., et al.: Road crack detection using deep convolutional neural network and adaptive thresholding (2019)
Flah, M., Suleiman, A.R., Nehdi, M.L.: Classification and quantification of cracks in concrete structures using deep learning image-based techniques. Cement Concrete Compos. 114, 103781 (2020). https://doi.org/10.1016/j.cemconcomp.2020.103781, https://www.sciencedirect.com/science/article/pii/S0958946520302870
Gao, Z., Peng, B., Li, T., Gou, C.: Generative adversarial networks for road crack image segmentation. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)
Goodfellow, I.J., et al.: Generative adversarial networks (2014). https://doi.org/10.48550/ARXIV.1406.2661, https://arxiv.org/abs/1406.2661
Ham, S., Bae, S., Kim, H., Lee, I., Lee, G.-P., Kim, D.: Training a semantic segmentation model for cracks in the concrete lining of tunnel. J. Korean Tunnel. Underground Space Assoc. 23(6), 549–558 (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. https://doi.org/10.48550/ARXIV.1512.03385, https://arxiv.org/abs/1512.03385
Hoang, N.D.: Detection of surface crack in building structure using image processing technique with an improved Otsu method for image thresholding. Adv. Civil Eng. 2018 (2018). https://doi.org/10.1155/2018/3924120
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks (2018)
Junior, G.S., Ferreira, J., Millán-Arias, C., Daniel, R., Junior, A.C., Fernandes, B.J.T.: Ceramic cracks segmentation with deep learning. Appl. Sci. 11(13) (2021). https://doi.org/10.3390/app11136017, https://www.mdpi.com/2076-3417/11/13/6017
Kalfarisi, R., Wu, Z., Soh, K.: Crack detection and segmentation using deep learning with 3D reality mesh model for quantitative assessment and integrated visualization. J. Comput. Civ. Eng. 34, 04020010 (2020)
Khalesi, S., Ahmadi, A.: Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: a novel image binarization technique (2020)
Kheradmandi, N., Mehranfar, V.: A critical review and comparative study on image segmentation-based techniques for pavement crack detection. Constr. Build. Mater. 321, 126162 (2022). https://doi.org/10.1016/j.conbuildmat.2021.126162, https://www.sciencedirect.com/science/article/pii/S0950061821038940
Kim, B., Yuvaraj, N., Sri Preethaa, K., Arun Pandian, R.: Surface crack detection using deep learning with shallow CNN architecture for enhanced computation. Neural Comput. Appl. 33(15), 9289–9305 (2021)
König, J., Jenkins, M.D., Mannion, M., Barrie, P., Morison, G.: Optimized deep encoder-decoder methods for crack segmentation. Digit. Sig. Process. 108, 102907 (2021). https://doi.org/10.1016/j.dsp.2020.102907, https://doi.org/10.1016/j.dsp.2020.102907
Lau, S.L., Chong, E.K., Yang, X., Wang, X.: Automated pavement crack segmentation using U-net-based convolutional neural network. IEEE Access 8, 114892–114899 (2020)
Lee, D., Kim, J., Lee, D.: Robust concrete crack detection using deep learning-based semantic segmentation. Int. J. Aeronaut. Space Sci. 20(1), 287–299 (2019)
Li, S., et al.: Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm. Constr. Build. Mater. 273, 121949 (2021)
Liu, Y., Yao, J., Lu, X., Xie, R., Li, L.: DeepCrack: a deep hierarchical feature learning architecture for crack segmentation. Neurocomputing 338, 139–153 (2019)
Mahler, D.S., Kharoufa, Z.B., Wong, E.K., Shaw, L.G.: Pavement distress analysis using image processing techniques. Comput.-Aided Civil Infrastr. Eng. 6(1), 1–14 (1991)
Mandal, V., Uong, L., Adu-Gyamfi, Y.: Automated road crack detection using deep convolutional neural networks. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 5212–5215. IEEE (2018)
Oliveira, H., Correia, P.L.: Road surface crack detection: improved segmentation with pixel-based refinement. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 2026–2030. IEEE (2017)
Pak, M., Kim, S.: Crack detection using fully convolutional network in wall-climbing robot. In: Park, J.J., Fong, S.J., Pan, Y., Sung, Y. (eds.) Advances in Computer Science and Ubiquitous Computing. LNEE, vol. 715, pp. 267–272. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9343-7_36
Park, S.E., Eem, S.H., Jeon, H.: Concrete crack detection and quantification using deep learning and structured light. Constr. Build. Mater. 252, 119096 (2020)
Polovnikov, V., Alekseev, D., Vinogradov, I., Lashkia, G.V.: Daunet: deep augmented neural network for pavement crack segmentation. IEEE Access 9, 125714–125723 (2021). https://doi.org/10.1109/ACCESS.2021.3111223
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91
Rezaie, A., Achanta, R., Godio, M., Beyer, K.: Comparison of crack segmentation using digital image correlation measurements and deep learning. Constr. Build. Mater. 261, 120474 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120474, https://www.sciencedirect.com/science/article/pii/S095006182032479X
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation (2015). https://doi.org/10.48550/ARXIV.1505.04597, https://arxiv.org/abs/1505.04597
Sharma, S., Balakrishnan, D., Kulkarni, S., Singh, S., Devunuri, S., Korlapati, S.C.R.: Crackseg9k: a collection of crack segmentation datasets (2022). https://doi.org/10.7910/DVN/EGIEBY
Shi, Y., Cui, L., Qi, Z., Meng, F., Chen, Z.: Automatic road crack detection using random structured forests. IEEE Trans. Intell. Transp. Syst. 17(12), 3434–3445 (2016)
Shim, S., Kim, J., Cho, G.C., Lee, S.W.: Multiscale and adversarial learning-based semi-supervised semantic segmentation approach for crack detection in concrete structures. IEEE Access 8, 170939–170950 (2020)
Silva, W.R.L.d., Lucena, D.S.d.: Concrete cracks detection based on deep learning image classification. In: Proceedings, vol. 2, p. 489. MDPI AG (2018)
Silva, W.R.L.d., Lucena, D.S.d.: Concrete cracks detection based on deep learning image classification. Proceedings 2(8) (2018). https://doi.org/10.3390/ICEM18-05387, https://www.mdpi.com/2504-3900/2/8/489
Sonka, M., Hlavac, V., Boyle, R.: Segmentation, Ch. 5 of Image Processing. Analysis and Machine Vision, pp. 158–163. PWS Publishing (1999)
Sun, X., Xie, Y., Jiang, L., Cao, Y., Liu, B.: DMA-net: deeplab with multi-scale attention for pavement crack segmentation. IEEE Trans. Intell. Transp. Syste. 1–12 (2022). https://doi.org/10.1109/TITS.2022.3158670
Talab, A.M.A., Huang, Z., Xi, F., HaiMing, L.: Detection crack in image using Otsu method and multiple filtering in image processing techniques. Optik 127(3), 1030–1033 (2016)
Yamane, T., Chun, P.J.: Crack detection from a concrete surface image based on semantic segmentation using deep learning. J. Adv. Concrete Technol. 18(9), 493–504 (2020)
Yang, F., Zhang, L., Yu, S., Prokhorov, D.V., Mei, X., Ling, H.: Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans. Intell. Transp. Syst. 21, 1525–1535 (2020)
Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., Ling, H.: Feature pyramid and hierarchical boosting network for pavement crack detection (2019)
Zhang, L., Shen, J., Zhu, B.: A research on an improved Unet-based concrete crack detection algorithm. Struct. Health Monit. 20(4), 1864–1879 (2021). https://doi.org/10.1177/1475921720940068, https://doi.org/10.1177/1475921720940068
Zhang, X., Rajan, D., Story, B.: Concrete crack detection using context-aware deep semantic segmentation network. Comput.-Aided Civil Infrastr. Eng. 34(11), 951–971 (2019)
Zou, Q., Cao, Y., Li, Q., Mao, Q., Wang, S.: Cracktree: automatic crack detection from pavement images. Pattern Recogn. Lett. 33(3), 227–238 (2012)
Özgenel, C.F., Sorguc, A.: Performance comparison of pretrained convolutional neural networks on crack detection in buildings (2018). https://doi.org/10.22260/ISARC2018/0094
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kulkarni, S., Singh, S., Balakrishnan, D., Sharma, S., Devunuri, S., Korlapati, S.C.R. (2023). CrackSeg9k: A Collection and Benchmark for Crack Segmentation Datasets and Frameworks. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13807. Springer, Cham. https://doi.org/10.1007/978-3-031-25082-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-25082-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25081-1
Online ISBN: 978-3-031-25082-8
eBook Packages: Computer ScienceComputer Science (R0)