Skip to main content

CrackSeg9k: A Collection and Benchmark for Crack Segmentation Datasets and Frameworks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13807))

Included in the following conference series:

Abstract

The detection of cracks is a crucial task in monitoring structural health and ensuring structural safety. The manual process of crack detection is time-consuming and subjective to the inspectors. Several researchers have tried tackling this problem using traditional Image Processing or learning-based techniques. However, their scope of work is limited to detecting cracks on a single type of surface (walls, pavements, glass, etc.). The metrics used to evaluate these methods are also varied across the literature, making it challenging to compare techniques. This paper addresses these problems by combining previously available datasets and unifying the annotations by tackling the inherent problems within each dataset, such as noise and distortions. We also present a pipeline that combines Image Processing and Deep Learning models. Finally, we benchmark the results of proposed models on these metrics on our new dataset and compare them with state-of-the-art models in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akagic, A., Buza, E., Omanovic, S., Karabegovic, A.: Pavement crack detection using Otsu thresholding for image segmentation. In: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1092–1097. IEEE (2018)

    Google Scholar 

  2. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation (2021). https://doi.org/10.48550/ARXIV.2105.05537, https://arxiv.org/abs/2105.05537

  3. Caron, M., et al.: Emerging properties in self-supervised vision transformers (2021). https://doi.org/10.48550/ARXIV.2104.14294, https://arxiv.org/abs/2104.14294

  4. Chambo, S.: Aiglern. https://www.irit.fr/Sylvie.Chambon/Crack/Detection/Database.htm

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs (2016). https://doi.org/10.48550/ARXIV.1606.00915, https://arxiv.org/abs/1606.00915

  6. Choi, W., Cha, Y.J.: SDDnet: real-time crack segmentation. IEEE Trans. Industr. Electron. 67(9), 8016–8025 (2019)

    Article  Google Scholar 

  7. Chollet, F.: Xception: deep learning with depthwise separable convolutions (2016). https://doi.org/10.48550/ARXIV.1610.02357, https://arxiv.org/abs/1610.02357

  8. Dais, D., İhsan Engin Bal, Smyrou, E., Sarhosis, V.: Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning. Autom. Constr. 125, 103606 (2021). https://doi.org/10.1016/j.autcon.2021.103606, https://www.sciencedirect.com/science/article/pii/S0926580521000571

  9. Dorafshan, S., Thomas, R., Maguire, M.: SDnet 2018: an annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks. Data Brief 21 (2018). https://doi.org/10.1016/j.dib.2018.11.015

  10. Eisenbach, M., et al.: How to get pavement distress detection ready for deep learning? A systematic approach. In: International Joint Conference on Neural Networks (IJCNN), pp. 2039–2047 (2017)

    Google Scholar 

  11. Fan, R., et al.: Road crack detection using deep convolutional neural network and adaptive thresholding (2019)

    Google Scholar 

  12. Flah, M., Suleiman, A.R., Nehdi, M.L.: Classification and quantification of cracks in concrete structures using deep learning image-based techniques. Cement Concrete Compos. 114, 103781 (2020). https://doi.org/10.1016/j.cemconcomp.2020.103781, https://www.sciencedirect.com/science/article/pii/S0958946520302870

  13. Gao, Z., Peng, B., Li, T., Gou, C.: Generative adversarial networks for road crack image segmentation. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  14. Goodfellow, I.J., et al.: Generative adversarial networks (2014). https://doi.org/10.48550/ARXIV.1406.2661, https://arxiv.org/abs/1406.2661

  15. Ham, S., Bae, S., Kim, H., Lee, I., Lee, G.-P., Kim, D.: Training a semantic segmentation model for cracks in the concrete lining of tunnel. J. Korean Tunnel. Underground Space Assoc. 23(6), 549–558 (2021)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. https://doi.org/10.48550/ARXIV.1512.03385, https://arxiv.org/abs/1512.03385

  17. Hoang, N.D.: Detection of surface crack in building structure using image processing technique with an improved Otsu method for image thresholding. Adv. Civil Eng. 2018 (2018). https://doi.org/10.1155/2018/3924120

  18. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks (2018)

    Google Scholar 

  19. Junior, G.S., Ferreira, J., Millán-Arias, C., Daniel, R., Junior, A.C., Fernandes, B.J.T.: Ceramic cracks segmentation with deep learning. Appl. Sci. 11(13) (2021). https://doi.org/10.3390/app11136017, https://www.mdpi.com/2076-3417/11/13/6017

  20. Kalfarisi, R., Wu, Z., Soh, K.: Crack detection and segmentation using deep learning with 3D reality mesh model for quantitative assessment and integrated visualization. J. Comput. Civ. Eng. 34, 04020010 (2020)

    Article  Google Scholar 

  21. Khalesi, S., Ahmadi, A.: Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: a novel image binarization technique (2020)

    Google Scholar 

  22. Kheradmandi, N., Mehranfar, V.: A critical review and comparative study on image segmentation-based techniques for pavement crack detection. Constr. Build. Mater. 321, 126162 (2022). https://doi.org/10.1016/j.conbuildmat.2021.126162, https://www.sciencedirect.com/science/article/pii/S0950061821038940

  23. Kim, B., Yuvaraj, N., Sri Preethaa, K., Arun Pandian, R.: Surface crack detection using deep learning with shallow CNN architecture for enhanced computation. Neural Comput. Appl. 33(15), 9289–9305 (2021)

    Article  Google Scholar 

  24. König, J., Jenkins, M.D., Mannion, M., Barrie, P., Morison, G.: Optimized deep encoder-decoder methods for crack segmentation. Digit. Sig. Process. 108, 102907 (2021). https://doi.org/10.1016/j.dsp.2020.102907, https://doi.org/10.1016/j.dsp.2020.102907

  25. Lau, S.L., Chong, E.K., Yang, X., Wang, X.: Automated pavement crack segmentation using U-net-based convolutional neural network. IEEE Access 8, 114892–114899 (2020)

    Article  Google Scholar 

  26. Lee, D., Kim, J., Lee, D.: Robust concrete crack detection using deep learning-based semantic segmentation. Int. J. Aeronaut. Space Sci. 20(1), 287–299 (2019)

    Article  Google Scholar 

  27. Li, S., et al.: Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm. Constr. Build. Mater. 273, 121949 (2021)

    Article  Google Scholar 

  28. Liu, Y., Yao, J., Lu, X., Xie, R., Li, L.: DeepCrack: a deep hierarchical feature learning architecture for crack segmentation. Neurocomputing 338, 139–153 (2019)

    Article  Google Scholar 

  29. Mahler, D.S., Kharoufa, Z.B., Wong, E.K., Shaw, L.G.: Pavement distress analysis using image processing techniques. Comput.-Aided Civil Infrastr. Eng. 6(1), 1–14 (1991)

    Article  Google Scholar 

  30. Mandal, V., Uong, L., Adu-Gyamfi, Y.: Automated road crack detection using deep convolutional neural networks. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 5212–5215. IEEE (2018)

    Google Scholar 

  31. Oliveira, H., Correia, P.L.: Road surface crack detection: improved segmentation with pixel-based refinement. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 2026–2030. IEEE (2017)

    Google Scholar 

  32. Pak, M., Kim, S.: Crack detection using fully convolutional network in wall-climbing robot. In: Park, J.J., Fong, S.J., Pan, Y., Sung, Y. (eds.) Advances in Computer Science and Ubiquitous Computing. LNEE, vol. 715, pp. 267–272. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9343-7_36

    Chapter  Google Scholar 

  33. Park, S.E., Eem, S.H., Jeon, H.: Concrete crack detection and quantification using deep learning and structured light. Constr. Build. Mater. 252, 119096 (2020)

    Article  Google Scholar 

  34. Polovnikov, V., Alekseev, D., Vinogradov, I., Lashkia, G.V.: Daunet: deep augmented neural network for pavement crack segmentation. IEEE Access 9, 125714–125723 (2021). https://doi.org/10.1109/ACCESS.2021.3111223

    Article  Google Scholar 

  35. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

  36. Rezaie, A., Achanta, R., Godio, M., Beyer, K.: Comparison of crack segmentation using digital image correlation measurements and deep learning. Constr. Build. Mater. 261, 120474 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120474, https://www.sciencedirect.com/science/article/pii/S095006182032479X

  37. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation (2015). https://doi.org/10.48550/ARXIV.1505.04597, https://arxiv.org/abs/1505.04597

  38. Sharma, S., Balakrishnan, D., Kulkarni, S., Singh, S., Devunuri, S., Korlapati, S.C.R.: Crackseg9k: a collection of crack segmentation datasets (2022). https://doi.org/10.7910/DVN/EGIEBY

  39. Shi, Y., Cui, L., Qi, Z., Meng, F., Chen, Z.: Automatic road crack detection using random structured forests. IEEE Trans. Intell. Transp. Syst. 17(12), 3434–3445 (2016)

    Article  Google Scholar 

  40. Shim, S., Kim, J., Cho, G.C., Lee, S.W.: Multiscale and adversarial learning-based semi-supervised semantic segmentation approach for crack detection in concrete structures. IEEE Access 8, 170939–170950 (2020)

    Article  Google Scholar 

  41. Silva, W.R.L.d., Lucena, D.S.d.: Concrete cracks detection based on deep learning image classification. In: Proceedings, vol. 2, p. 489. MDPI AG (2018)

    Google Scholar 

  42. Silva, W.R.L.d., Lucena, D.S.d.: Concrete cracks detection based on deep learning image classification. Proceedings 2(8) (2018). https://doi.org/10.3390/ICEM18-05387, https://www.mdpi.com/2504-3900/2/8/489

  43. Sonka, M., Hlavac, V., Boyle, R.: Segmentation, Ch. 5 of Image Processing. Analysis and Machine Vision, pp. 158–163. PWS Publishing (1999)

    Google Scholar 

  44. Sun, X., Xie, Y., Jiang, L., Cao, Y., Liu, B.: DMA-net: deeplab with multi-scale attention for pavement crack segmentation. IEEE Trans. Intell. Transp. Syste. 1–12 (2022). https://doi.org/10.1109/TITS.2022.3158670

  45. Talab, A.M.A., Huang, Z., Xi, F., HaiMing, L.: Detection crack in image using Otsu method and multiple filtering in image processing techniques. Optik 127(3), 1030–1033 (2016)

    Article  Google Scholar 

  46. Yamane, T., Chun, P.J.: Crack detection from a concrete surface image based on semantic segmentation using deep learning. J. Adv. Concrete Technol. 18(9), 493–504 (2020)

    Google Scholar 

  47. Yang, F., Zhang, L., Yu, S., Prokhorov, D.V., Mei, X., Ling, H.: Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans. Intell. Transp. Syst. 21, 1525–1535 (2020)

    Article  Google Scholar 

  48. Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., Ling, H.: Feature pyramid and hierarchical boosting network for pavement crack detection (2019)

    Google Scholar 

  49. Zhang, L., Shen, J., Zhu, B.: A research on an improved Unet-based concrete crack detection algorithm. Struct. Health Monit. 20(4), 1864–1879 (2021). https://doi.org/10.1177/1475921720940068, https://doi.org/10.1177/1475921720940068

  50. Zhang, X., Rajan, D., Story, B.: Concrete crack detection using context-aware deep semantic segmentation network. Comput.-Aided Civil Infrastr. Eng. 34(11), 951–971 (2019)

    Article  Google Scholar 

  51. Zou, Q., Cao, Y., Li, Q., Mao, Q., Wang, S.: Cracktree: automatic crack detection from pavement images. Pattern Recogn. Lett. 33(3), 227–238 (2012)

    Article  Google Scholar 

  52. Özgenel, C.F., Sorguc, A.: Performance comparison of pretrained convolutional neural networks on crack detection in buildings (2018). https://doi.org/10.22260/ISARC2018/0094

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreyas Kulkarni .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 266 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulkarni, S., Singh, S., Balakrishnan, D., Sharma, S., Devunuri, S., Korlapati, S.C.R. (2023). CrackSeg9k: A Collection and Benchmark for Crack Segmentation Datasets and Frameworks. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13807. Springer, Cham. https://doi.org/10.1007/978-3-031-25082-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25082-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25081-1

  • Online ISBN: 978-3-031-25082-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics