Skip to main content

A Hyperspectral and RGB Dataset for Building Façade Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13807))

Included in the following conference series:

Abstract

Hyperspectral Imaging (HSI) provides detailed spectral information and has been utilised in many real-world applications. This work introduces an HSI dataset of building facades in a light industry environment with the aim of classifying different building materials in a scene. The dataset is called the Light Industrial Building HSI (LIB-HSI) dataset. This dataset consists of nine categories and 44 classes. In this study, we investigated deep learning based semantic segmentation algorithms on RGB and hyperspectral images to classify various building materials, such as timber, brick and concrete. Our dataset is publicly available at CSIRO data access portal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adão, T., et al.: Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 9(11), 1110 (2017)

    Article  Google Scholar 

  2. Chakraborty, T., Trehan, U.: Spectralnet: exploring spatial-spectral waveletcnn for hyperspectral image classification (2021)

    Google Scholar 

  3. Dai, M., Ward, W.O., Meyers, G., Tingley, D.D., Mayfield, M.: Residential building facade segmentation in the urban environment. Build. Environ. 199, 107921 (2021)

    Article  Google Scholar 

  4. Dale, L.M., et al.: Hyperspectral imaging applications in agriculture and AGRO-food product quality and safety control: a review. Appl. Spectrosc. Rev. 48(2), 142–159 (2013)

    Article  Google Scholar 

  5. Feng, Y.Z., Sun, D.W.: Application of hyperspectral imaging in food safety inspection and control: a review. Crit. Rev. Food Sci. Nutr. 52(11), 1039–1058 (2012)

    Article  Google Scholar 

  6. Graña, M., Veganzons, M., Ayerdi, B.: Hyperspectral remote sensing scenes. http://ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes

  7. Habili, N., Oorloff, J.: Scyllarus™: from research to commercial software. In: Proceedings of the ASWEC 2015 24th Australasian Software Engineering Conference, pp. 119–122 (2015)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  11. Korč, F., Förstner, W.: eTRIMS Image Database for interpreting images of man-made scenes (TR-IGG-P-2009-01) (2009). http://www.ipb.uni-bonn.de/projects/etrims_db/

  12. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  14. Lu, G., Fei, B.: Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1), 010901 (2014)

    Article  Google Scholar 

  15. Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A.: Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J. Photogramm. Remote. Sens. 152, 166–177 (2019)

    Article  Google Scholar 

  16. Riemenschneider, H., Krispel, U., Thaller, W., Donoser, M., Havemann, S., Fellner, D., Bischof, H.: Irregular lattices for complex shape grammar facade parsing. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1640–1647. IEEE (2012)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Roy, S.K., Krishna, G., Dubey, S.R., Chaudhuri, B.B.: Hybridsn: Exploring 3-d-2-d CNN feature hierarchy for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 17(2), 277–281 (2019)

    Article  Google Scholar 

  19. Roy, S.K., Manna, S., Song, T., Bruzzone, L.: Attention-based adaptive spectral-spatial kernel ResNet for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(9), 7831–7843 (2020)

    Article  Google Scholar 

  20. Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., Paragios, N.: Shape grammar parsing via reinforcement learning. In: CVPR 2011, pp. 2273–2280. IEEE (2011)

    Google Scholar 

  21. Tyleček, R., Šára, R.: Spatial pattern templates for recognition of objects with regular structure. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 364–374. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40602-7_39

    Chapter  Google Scholar 

  22. Zhang, S., Deng, Q., Ding, Z.: Hyperspectral image segmentation based on graph processing over multilayer networks. arXiv preprint. arXiv:2111.15018 (2021)

  23. Zhao, J., Hu, L., Dong, Y., Huang, L., Weng, S., Zhang, D.: A combination method of stacked autoencoder and 3d deep residual network for hyperspectral image classification. Int. J. Appl. Earth Obs. Geoinf. 102, 102459 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Armin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Habili, N. et al. (2023). A Hyperspectral and RGB Dataset for Building Façade Segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13807. Springer, Cham. https://doi.org/10.1007/978-3-031-25082-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25082-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25081-1

  • Online ISBN: 978-3-031-25082-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics