Skip to main content

A Geometric-Relational Deep Learning Framework for BIM Object Classification

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13807))

Included in the following conference series:

Abstract

Interoperability issue is a significant problem in Building Information Modeling (BIM). Object type, as a kind of critical semantic information needed in multiple BIM applications like scan-to-BIM and code compliance checking, also suffers when exchanging BIM data or creating models using software of other domains. It can be supplemented using deep learning. Current deep learning methods mainly learn from the shape information of BIM objects for classification, leaving relational information inherent in the BIM context unused. To address this issue, we introduce a two-branch geometric-relational deep learning framework. It boosts previous geometric classification methods with relational information. We also present a BIM object dataset—IFCNet++, which contains both geometric and relational information about the objects. Experiments show that our framework can be flexibly adapted to different geometric methods and relational features do act as a bonus to general geometric learning methods, obviously improving their classification performance, thus reducing the manual labor of checking models and improving the practical value of enriched BIM models.

This work was supported by the National Key Research and Development Program of China (2021YFB1600303).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bazjanac, V., Kiviniemi, A.: Reduction, simplification, translation and interpretation in the exchange of model data. In: Cib w, vol. 78, pp. 163–168 (2007)

    Google Scholar 

  2. Belsky, M., Sacks, R., Brilakis, I.: Semantic enrichment for building information modeling. Comput.-Aided Civ. Infrastruct. Eng. 31(4), 261–274 (2016)

    Article  Google Scholar 

  3. Bennamoun, M., Guo, Y., Sohel, F.: Feature selection for 2 d and 3 d face recognition. Wiley Encycl. Electr. Electr. Eng., 1–28 (1999)

    Google Scholar 

  4. Bloch, T., Sacks, R.: Comparing machine learning and rule-based inferencing for semantic enrichment of BIM models. Autom. Constr. 91, 256–272 (2018)

    Article  Google Scholar 

  5. Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. (TOG) 30(1), 1–20 (2011)

    Article  Google Scholar 

  6. Collins, F.C., Braun, A., Ringsquandl, M., Hall, D.M., Borrmann, A.: Assessing IFC classes with means of geometric deep learning on different graph encodings. In: Proceedings of the 2021 European Conference on Computing in Construction (2021)

    Google Scholar 

  7. Daum, S., Borrmann, A.: Processing of topological BIM queries using boundary representation based methods. Adv. Eng. Inf. 28(4), 272–286 (2014)

    Article  Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  9. Eastman, C.M., Jeong, Y.S., Sacks, R., Kaner, I.: Exchange model and exchange object concepts for implementation of national BIM standards. J. Comput. Civ. Eng. 24(1), 25–34 (2010)

    Article  Google Scholar 

  10. Emunds, C., Pauen, N., Richter, V., Frisch, J., van Treeck, C.: IFCNet: a benchmark dataset for IFC entity classification. In: EG-ICE 2021 Workshop on Intelligent Computing in Engineering, p. 166. Universit atsverlag der TU Berlin (2021)

    Google Scholar 

  11. Emunds, C., Pauen, N., Richter, V., Frisch, J., van Treeck, C.: Sparse-BIM: classification of IFC-based geometry via sparse convolutional neural networks. Adv. Eng. Inf. 53, 101641 (2022)

    Article  Google Scholar 

  12. Gao, Y., Dai, Q.: View-based 3d object retrieval: challenges and approaches. IEEE Multimed. 21(3), 52–57 (2014)

    Article  Google Scholar 

  13. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., Kwok, N.M.: A comprehensive performance evaluation of 3d local feature descriptors. Int. J. Comput. Vis. 116(1), 66–89 (2016)

    Article  MathSciNet  Google Scholar 

  14. Guo, Y., Sohel, F., Bennamoun, M., Lu, M., Wan, J.: Rotational projection statistics for 3d local surface description and object recognition. Int. J. Comput. Vis. 105(1), 63–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, Y., Sohel, F., Bennamoun, M., Wan, J., Lu, M.: An accurate and robust range image registration algorithm for 3d object modeling. IEEE Trans. Multimed. 16(5), 1377–1390 (2014)

    Article  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Kim, J., Song, J., Lee, J.-K.: Recognizing and classifying unknown object in BIM using 2D CNN. In: Lee, J.-H. (ed.) CAAD Futures 2019. CCIS, vol. 1028, pp. 47–57. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-8410-3_4

    Chapter  Google Scholar 

  18. Koo, B., Jung, R., Yu, Y.: Automatic classification of wall and door BIM element subtypes using 3D geometric deep neural networks. Adv. Eng. Inform. 47, 101200 (2021)

    Article  Google Scholar 

  19. Koo, B., Jung, R., Yu, Y., Kim, I.: A geometric deep learning approach for checking element-to-entity mappings in infrastructure building information models. J. Comput. Des. Eng. 8(1), 239–250 (2021)

    Google Scholar 

  20. Koo, B., La, S., Cho, N.W., Yu, Y.: Using support vector machines to classify building elements for checking the semantic integrity of building information models. Autom. Constr. 98, 183–194 (2019)

    Article  Google Scholar 

  21. Lai, K., Bo, L., Ren, X., Fox, D.: A scalable tree-based approach for joint object and pose recognition. In: Twenty-fifth AAAI Conference on Artificial Intelligence (2011)

    Google Scholar 

  22. Lei, Y., Bennamoun, M., Hayat, M., Guo, Y.: An efficient 3D face recognition approach using local geometrical signatures. Pattern Recogn. 47(2), 509–524 (2014)

    Article  Google Scholar 

  23. Ma, L., Sacks, R., Kattell, U.: Building model object classification for semantic enrichment using geometric features and pairwise spatial relations (2017)

    Google Scholar 

  24. Matei, B., et al.: Rapid object indexing using locality sensitive hashing and joint 3D-signature space estimation. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1111–1126 (2006)

    Article  Google Scholar 

  25. Mazairac, W., Beetz, J.: BIMQL-an open query language for building information models. Adv. Eng. Inform. 27(4), 444–456 (2013)

    Article  Google Scholar 

  26. Mian, A.S., Bennamoun, M., Owens, R.: Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1584–1601 (2006)

    Article  Google Scholar 

  27. Mian, A.S., Bennamoun, M., Owens, R.A.: A novel representation and feature matching algorithm for automatic pairwise registration of range images. Int. J. Comput. Vis. 66(1), 19–40 (2006)

    Article  Google Scholar 

  28. Olofsson, T., Lee, G., Eastman, C.: Case studies of BIM in use. Electron. J. Inf. Technol. Constr. 13, 244–245 (2008)

    Google Scholar 

  29. Pauwels, P., Terkaj, W.: EXPRESS to OWL for construction industry: towards a recommendable and usable ifcOWL ontology. Autom. Constr. 63, 100–133 (2016)

    Article  Google Scholar 

  30. Pazlar, T., Turk, Ž: Interoperability in practice: geometric data exchance using the IFC standard. J. Inf. Technol. Constr. (ITcon) 13(24), 362–380 (2008)

    Google Scholar 

  31. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  32. Qin, F.W., Li, L.Y., Gao, S.M., Yang, X.L., Chen, X.: A deep learning approach to the classification of 3D CAD models. J. Zhejiang Univ. SCI. C 15(2), 91–106 (2014)

    Google Scholar 

  33. Shang, L., Greenspan, M.: Real-time object recognition in sparse range images using error surface embedding. Int. J. Comput. Vis. 89(2), 211–228 (2010)

    Article  Google Scholar 

  34. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)

    Google Scholar 

  35. Su, J.C., Gadelha, M., Wang, R., Maji, S.: A deeper look at 3D shape classifiers. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  36. Tombari, F., Salti, S., Di Stefano, L.: Performance evaluation of 3d keypoint detectors. Int. J. Comput. Vis. 102(1), 198–220 (2013)

    Article  Google Scholar 

  37. Venugopal, M., Eastman, C.M., Sacks, R., Teizer, J.: Semantics of model views for information exchanges using the industry foundation class schema. Adv. Eng. Inform. 26(2), 411–428 (2012)

    Article  Google Scholar 

  38. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  39. Wu, Z., et al.: 3d shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hairong Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, H., Gao, G., Huang, H., Ke, Z., Peng, C., Gu, M. (2023). A Geometric-Relational Deep Learning Framework for BIM Object Classification. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13807. Springer, Cham. https://doi.org/10.1007/978-3-031-25082-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25082-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25081-1

  • Online ISBN: 978-3-031-25082-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics