Skip to main content

Automatic Grading of Cervical Biopsies by Combining Full and Self-supervision

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13807))

Included in the following conference series:

  • 2243 Accesses

Abstract

In computational pathology, predictive models from Whole Slide Images (WSI) mostly rely on Multiple Instance Learning (MIL), where the WSI are represented as a bag of tiles, each of which is encoded by a Neural Network (NN). Slide-level predictions are then achieved by building models on the agglomeration of these tile encodings. The tile encoding strategy thus plays a key role for such models. Current approaches include the use of encodings trained on unrelated data sources, full supervision or self-supervision. While self-supervised learning (SSL) exploits unlabeled data, it often requires large computational resources to train. On the other end of the spectrum, fully-supervised methods make use of valuable prior knowledge about the data but involve a costly amount of expert time. This paper proposes a framework to reconcile SSL and full supervision, showing that a combination of both provides efficient encodings, both in terms of performance and in terms of biological interpretability. On a recently organized challenge on grading Cervical Biopsies, we show that our mixed supervision scheme reaches high performance (weighted accuracy (WA): 0.945), outperforming both SSL (WA: 0.927) and transfer learning from ImageNet (WA: 0.877). We further shed light upon the internal representations that trigger classification results, providing a method to reveal relevant phenotypic patterns for grading cervical biopsies. We expect that the combination of full and self-supervision is an interesting strategy for many tasks in computational pathology and will be widely adopted by the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bera, K., Schalper, K.A., Rimm, D.L., Velcheti, V., Madabhushi, A.: Artificial intelligence in digital pathology-new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16(11), 703–715 (2019)

    Article  Google Scholar 

  2. Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301–1309 (2019). https://doi.org/10.1038/s41591-019-0508-1. https://www.nature.com/articles/s41591-019-0508-1

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations (2020). https://arxiv.org/abs/2002.05709v3

  4. Chung, Y.A., Lin, H.T., Yang, S.W.: Cost-aware pre-training for multiclass cost-sensitive deep learning. IJCAI (2016)

    Google Scholar 

  5. Coudray, N., et al.: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24(10), 1559–1567 (2018). https://doi.org/10.1038/s41591-018-0177-5. https://www.nature.com/articles/s41591-018-0177-5

  6. Courtiol, P., Tramel, E.W., Sanselme, M., Wainrib, G.: Classification and disease localization in histopathology using only global labels: a weakly-supervised approach. arXiv:1802.02212 [cs, stat] (2020)

  7. Dehaene, O., Camara, A., Moindrot, O., de Lavergne, A., Courtiol, P.: Self-supervision closes the gap between weak and strong supervision in histology (2020). https://arxiv.org/abs/2012.03583v1

  8. Diao, J.A., et al.: Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes. Nat. Commun. 12(1), 1613 (2021). https://doi.org/10.1038/s41467-021-21896-9. https://www.nature.com/articles/s41467-021-21896-9

  9. DrivenData: TissueNet: Detect Lesions in Cervical Biopsies. https://www.drivendata.org/competitions/67/competition-cervical-biopsy/page/254/

  10. Ehteshami Bejnordi, B., et al.: Consortium: diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017). https://doi.org/10.1001/jama.2017.14585

  11. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. Technical report, Univeristé de Montréal (2009)

    Google Scholar 

  12. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. Technical report (2016). https://ui.adsabs.harvard.edu/abs/2016arXiv160806993H

  13. Huang, Y.J., et al.: Rectifying supporting regions with mixed and active supervision for rib fracture recognition. IEEE Trans. Med. Imaging 39(12), 3843–3854 (2020). https://doi.org/10.1109/TMI.2020.3006138

    Article  Google Scholar 

  14. Ilse, M., Tomczak, J.M., Welling, M.: Attention-based deep multiple instance learning (2018). https://arxiv.org/abs/1802.04712v4

  15. Kather, J.N., et al.: Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer 1(8), 789–799 (2020). https://doi.org/10.1038/s43018-020-0087-6. https://www.nature.com/articles/s43018-020-0087-6

  16. Lazard, T., et al.: Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images. Cell Rep. Med. 3(12), 100872 (2022). https://doi.org/10.1016/j.xcrm.2022.100872

    Article  Google Scholar 

  17. Li, J., et al.: Hybrid supervision learning for pathology whole slide image classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 309–318. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_30

    Chapter  Google Scholar 

  18. Li, Z., et al.: Thoracic disease identification and localization with limited supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  19. Lu, M.Y., Williamson, D.F.K., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021). https://doi.org/10.1038/s41551-020-00682-w. https://www.nature.com/articles/s41551-020-00682-w

  20. Mlynarski, P., Delingette, H., Criminisi, A., Ayache, N.: Deep learning with mixed supervision for brain tumor segmentation. J. Med. Imaging 6(3), 034002 (2019). https://doi.org/10.1117/1.JMI.6.3.034002. https://www.spiedigitallibrary.org/journals/journal-of-medical-imaging/volume-6/issue-3/034002/Deep-learning-with-mixed-supervision-for-brain-tumor-segmentation/10.1117/1.JMI.6.3.034002.full

  21. Nguyen, A., Yosinski, J., Clune, J.: Understanding neural networks via feature visualization: a survey. arXiv:1904.08939 [cs, stat] (2019)

  22. Ruifrok, A.C., Johnston, D.A.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291–299 (2001)

    Google Scholar 

  23. Saillard, C., et al.: Identification of pancreatic adenocarcinoma molecular subtypes on histology slides using deep learning models. J. Clin. Oncol. 39(15_Suppl.), 4141 (2021). https://doi.org/10.1200/JCO.2021.39.15suppl.4141. https://ascopubs.org/doi/abs/10.1200/JCO.2021.39.15suppl.4141

  24. Tourniaire, P., Ilie, M., Hofman, P., Ayache, N., Delingette, H.: Attention-based multiple instance learning with mixed supervision on the camelyon16 dataset. In: Proceedings of the MICCAI Workshop on Computational Pathology, pp. 216–226. PMLR (2021). https://proceedings.mlr.press/v156/tourniaire21a.html

  25. Tu, H.H., Lin, H.T.: One-sided support vector regression for multiclass cost-sensitive classification, p. 8 (2010)

    Google Scholar 

  26. Weitz, P., et al.: Transcriptome-wide prediction of prostate cancer gene expression from histopathology images using co-expression based convolutional neural networks. arXiv preprint arXiv:2104.09310 (2021)

  27. WHO: Colposcopy and treatment of cervical intraepithelial neoplasia: a beginners’ manual (2020). https://screening.iarc.fr/colpochap.php?chap=2

Download references

Acknowledgments

The authors thank Etienne Decencière for the thoughful discussions that help the project. ML was supported by a CIFRE PhD fellowship founded by KEEN EYE and ANRT (CIFRE 2019/1905). TL was supported by a Q-Life PhD fellowship (Q-life ANR-17-CONV-0005). This work was supported by the French government under management of ANR as part of the “Investissements d’avenir” program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Walter .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5289 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lubrano, M. et al. (2023). Automatic Grading of Cervical Biopsies by Combining Full and Self-supervision. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13807. Springer, Cham. https://doi.org/10.1007/978-3-031-25082-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25082-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25081-1

  • Online ISBN: 978-3-031-25082-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics