Skip to main content

Using a 3D ResNet for Detecting the Presence and Severity of COVID-19 from CT Scans

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13807))

Included in the following conference series:

Abstract

Deep learning has been used to assist in the analysis of medical imaging. One use is the classification of Computed Tomography (CT) scans for detecting COVID-19 in subjects. This paper presents Cov3d, a three dimensional convolutional neural network for detecting the presence and severity of COVID-19 from chest CT scans. Trained on the COV19-CT-DB dataset with human expert annotations, it achieves a macro f1 score of 87.87 on the test set for the task of detecting the presence of COVID-19. This was the ‘runner-up’ for this task in the ‘AI-enabled Medical Image Analysis Workshop and Covid-19 Diagnosis Competition’ (MIA-COV19D). It achieved a macro f1 score of 46.00 for the task of classifying the severity of COVID-19 and was ranked in fourth place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code for this project has been released under the Apache-2.0 license and is publicly available at https://github.com/rbturnbull/cov3d/.

  2. 2.

    TorchApp Framework is available as an alpha release at: https://github.com/rbturnbull/torchapp/.

References

  1. Arsenos, A., Kollias, D., Kollias, S.: A large imaging database and novel deep neural architecture for Covid-19 diagnosis. In: 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), pp. 1–5 (2022). https://doi.org/10.1109/IVMSP54334.2022.9816321

  2. Biewald, L.: Experiment tracking with weights and biases (2020). Software available: https://www.wandb.com/

  3. Harmon, S.A., et al.: Artificial intelligence for the detection of Covid-19 pneumonia on chest CT using multinational datasets. Nat. Commun. 11(1), 4080 (2020). https://doi.org/10.1038/s41467-020-17971-2

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  5. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors (2012). https://doi.org/10.48550/ARXIV.1207.0580, https://arxiv.org/abs/1207.0580

  6. Hou, J., Xu, J., Feng, R., Zhang, Y.: FDVTS’s solution for 2nd Cov19d competition on Covid-19 detection and severity analysis (2022). https://doi.org/10.48550/ARXIV.2207.01758, https://arxiv.org/abs/2207.01758

  7. Hou, J., Xu, J., Feng, R., Zhang, Y., Shan, F., Shi, W.: CMC-Cov19d: Contrastive mixup classification for Covid-19 diagnosis. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 454–461 (2021). https://doi.org/10.1109/ICCVW54120.2021.00055

  8. Howard, J., Gugger, S.: Fastai: A layered API for deep learning. Information 11(2) (2020). https://doi.org/10.3390/info11020108, https://www.mdpi.com/2078-2489/11/2/108

  9. Hsu, C.C., Tsai, C.H., Chen, G.L., Ma, S.D., Tai, S.C.: Spatiotemporal feature learning based on two-step LSTM and transformer for CT scans (2022). https://doi.org/10.48550/ARXIV.2207.01579, https://arxiv.org/abs/2207.01579

  10. Kay, W., et al.: The kinetics human action video dataset (2017). https://doi.org/10.48550/ARXIV.1705.06950, https://arxiv.org/abs/1705.06950

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://doi.org/10.48550/ARXIV.1412.6980, https://arxiv.org/abs/1412.6980

  12. Kollias, D., Arsenos, A., Kollias, S.: AI-MIA: Covid-19 detection & severity analysis through medical imaging. arXiv preprint arXiv:2206.04732 (2022)

  13. Kollias, D., Arsenos, A., Soukissian, L., Kollias, S.: MIA-COV19D: Covid-19 detection through 3-D chest CT image analysis. arXiv preprint arXiv:2106.07524 (2021)

  14. Kollias, D., et al.: Deep transparent prediction through latent representation analysis. arXiv preprint arXiv:2009.07044 (2020)

  15. Kollias, D., Tagaris, A., Stafylopatis, A., Kollias, S., Tagaris, G.: Deep neural architectures for prediction in healthcare. Complex Intell. Syst. 4(2), 119–131 (2018)

    Article  Google Scholar 

  16. Kollias, D., et al.: Transparent adaptation in deep medical image diagnosis. In: TAILOR, pp. 251–267 (2020)

    Google Scholar 

  17. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Peeling, R.W., Heymann, D.L., Teo, Y.Y., Garcia, P.J.: Diagnostics for Covid-19: moving from pandemic response to control. Lancet (London, England) 399, 757–768 (2022). https://doi.org/10.1016/S0140-6736(21)02346-1

    Article  Google Scholar 

  20. Seeram, E.: Computed tomography: a technical review. Radiol. Technol. 89, 279CT–302CT (2018)

    Google Scholar 

  21. Smith, L.N.: A disciplined approach to neural network hyper-parameters: part 1 - learning rate, batch size, momentum, and weight decay (2018). https://doi.org/10.48550/ARXIV.1803.09820, https://arxiv.org/abs/1803.09820

  22. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826. IEEE Computer Society, Los Alamitos, June 2016. https://doi.org/10.1109/CVPR.2016.308, https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.308

  23. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018). https://doi.org/10.1109/CVPR.2018.00675

  24. World Health Organization: Recommendations for national SARS-CoV-2 testing strategies and diagnostic capacities. https://www.who.int/publications/i/item/WHO-2019-nCoV-lab-testing-2021.1-eng. Accessed 27 June 2022

  25. Xie, X., Zhong, Z., Zhao, W., Zheng, C., Wang, F., Liu, J.: Chest CT for typical coronavirus disease 2019 (COVID-19) Pneumonia: relationship to negative RT-PCR testing. Radiology 296(2), E41–E45 (2020). https://doi.org/10.1148/radiol.2020200343, pMID: 32049601

Download references

Acknowledgements

This research was supported by The University of Melbourne’s Research Computing Services and the Petascale Campus. Sean Crosby and Naren Chinnam were instrumental in arranging the computational resources necessary. I thank Patricia Desmond and David Turnbull for providing feedback on earlier versions of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Turnbull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Turnbull, R. (2023). Using a 3D ResNet for Detecting the Presence and Severity of COVID-19 from CT Scans. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13807. Springer, Cham. https://doi.org/10.1007/978-3-031-25082-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25082-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25081-1

  • Online ISBN: 978-3-031-25082-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics