Abstract
Collection of real world annotations for training semantic segmentation models is an expensive process. Unsupervised domain adaptation (UDA) tries to solve this problem by studying how more accessible data such as synthetic data can be used to train and adapt models to real world images without requiring their annotations. Recent UDA methods applies self-learning by training on pixel-wise classification loss using a student and teacher network. In this paper, we propose the addition of a consistency regularization term to semi-supervised UDA by modelling the inter-pixel relationship between elements in networks’ output. We demonstrate the effectiveness of the proposed consistency regularization term by applying it to the state-of-the-art DAFormer framework and improving mIoU19 performance on the GTA5 to Cityscapes benchmark by 0.8 and mIou16 performance on the SYNTHIA to Cityscapes benchmark by 1.2.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017)
Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. CoRR abs/1612.05424 (2016)
Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(04), 834–848 (2018). https://doi.org/10.1109/TPAMI.2017.2699184
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. (2016). https://doi.org/10.1109/TPAMI.2017.2699184
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedingse IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Gong, R., Li, W., Chen, Y., Van Gool, L.: Dlow: domain flow for adaptation and generalization. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2472–2481 (2019). https://doi.org/10.1109/CVPR.2019.00258
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
Hoffman, J., et aal.: CyCADA: cycle-consistent adversarial domain adaptation. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 1989–1998. PMLR (2018). https://proceedings.mlr.press/v80/hoffman18a.html
Hoffman, J., Wang, D., Yu, F., Darrell, T.: FCNS in the wild: pixel-level adversarial and constraint-based adaptation (2016)
Hoyer, L., Dai, D., Gool, L.V.: Daformer: improving network architectures and training strategies for domain-adaptive semantic segmentation. CoRR abs/2111.14887 (2021). https://arxiv.org/abs/2111.14887
Kim, J., Jang, J., Park, H.: Structured consistency loss for semi-supervised semantic segmentation. CoRR abs/2001.04647 (2020). https://arxiv.org/abs/2001.04647
Li, Y., Yuan, L., Vasconcelos, N.: Bidirectional learning for domain adaptation of semantic segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6929–6938 (2019). https://doi.org/10.1109/CVPR.2019.00710
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=Bkg6RiCqY7
Olsson, V., Tranheden, W., Pinto, J., Svensson, L.: Classmix: segmentation-based data augmentation for semi-supervised learning. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1368–1377 (2021). https://doi.org/10.1109/WACV48630.2021.00141
Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352
Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv 1409.1556 (2014)
Tarvainen, A., Valpola, H.: Weight-averaged consistency targets improve semi-supervised deep learning results. CoRR abs/1703.01780 (2017)
Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. CoRR abs/1702.05464 (2017)
Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Verma, V., Lamb, A., Kannala, J., Bengio, Y., Lopez-Paz, D.: Interpolation consistency training for semi-supervised learning. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 3635–3641. International Joint Conferences on Artificial Intelligence Organization (2019). https://doi.org/10.24963/ijcai.2019/504
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers. arXiv preprint arXiv:2105.15203 (2021)
Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2016)
Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=r1Ddp1-Rb
Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., Wen, F.: Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. arXiv preprint arXiv:2101.10979 (2021)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6230–6239 (2017). https://doi.org/10.1109/CVPR.2017.660
Acknowledgment
This research is supported by the Centre for Frontier AI Research (CFAR) and Robotics-HTPO seed fund C211518008.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Koh, K.B., Fernando, B. (2023). Consistency Regularization for Domain Adaptation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13808. Springer, Cham. https://doi.org/10.1007/978-3-031-25085-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-25085-9_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25084-2
Online ISBN: 978-3-031-25085-9
eBook Packages: Computer ScienceComputer Science (R0)