Skip to main content

Consistency Regularization for Domain Adaptation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13808))

Included in the following conference series:

Abstract

Collection of real world annotations for training semantic segmentation models is an expensive process. Unsupervised domain adaptation (UDA) tries to solve this problem by studying how more accessible data such as synthetic data can be used to train and adapt models to real world images without requiring their annotations. Recent UDA methods applies self-learning by training on pixel-wise classification loss using a student and teacher network. In this paper, we propose the addition of a consistency regularization term to semi-supervised UDA by modelling the inter-pixel relationship between elements in networks’ output. We demonstrate the effectiveness of the proposed consistency regularization term by applying it to the state-of-the-art DAFormer framework and improving mIoU19 performance on the GTA5 to Cityscapes benchmark by 0.8 and mIou16 performance on the SYNTHIA to Cityscapes benchmark by 1.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/kw01sg/CRDA.

  2. 2.

    https://github.com/lhoyer/DAFormer.

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017)

    Article  Google Scholar 

  2. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. CoRR abs/1612.05424 (2016)

    Google Scholar 

  3. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(04), 834–848 (2018). https://doi.org/10.1109/TPAMI.2017.2699184

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. (2016). https://doi.org/10.1109/TPAMI.2017.2699184

  5. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedingse IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  6. Gong, R., Li, W., Chen, Y., Van Gool, L.: Dlow: domain flow for adaptation and generalization. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2472–2481 (2019). https://doi.org/10.1109/CVPR.2019.00258

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  8. Hoffman, J., et aal.: CyCADA: cycle-consistent adversarial domain adaptation. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 1989–1998. PMLR (2018). https://proceedings.mlr.press/v80/hoffman18a.html

  9. Hoffman, J., Wang, D., Yu, F., Darrell, T.: FCNS in the wild: pixel-level adversarial and constraint-based adaptation (2016)

    Google Scholar 

  10. Hoyer, L., Dai, D., Gool, L.V.: Daformer: improving network architectures and training strategies for domain-adaptive semantic segmentation. CoRR abs/2111.14887 (2021). https://arxiv.org/abs/2111.14887

  11. Kim, J., Jang, J., Park, H.: Structured consistency loss for semi-supervised semantic segmentation. CoRR abs/2001.04647 (2020). https://arxiv.org/abs/2001.04647

  12. Li, Y., Yuan, L., Vasconcelos, N.: Bidirectional learning for domain adaptation of semantic segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6929–6938 (2019). https://doi.org/10.1109/CVPR.2019.00710

  13. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  14. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=Bkg6RiCqY7

  15. Olsson, V., Tranheden, W., Pinto, J., Svensson, L.: Classmix: segmentation-based data augmentation for semi-supervised learning. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1368–1377 (2021). https://doi.org/10.1109/WACV48630.2021.00141

  16. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7

    Chapter  Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352

  19. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv 1409.1556 (2014)

    Google Scholar 

  21. Tarvainen, A., Valpola, H.: Weight-averaged consistency targets improve semi-supervised deep learning results. CoRR abs/1703.01780 (2017)

    Google Scholar 

  22. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. CoRR abs/1702.05464 (2017)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

  24. Verma, V., Lamb, A., Kannala, J., Bengio, Y., Lopez-Paz, D.: Interpolation consistency training for semi-supervised learning. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 3635–3641. International Joint Conferences on Artificial Intelligence Organization (2019). https://doi.org/10.24963/ijcai.2019/504

  25. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers. arXiv preprint arXiv:2105.15203 (2021)

  26. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2016)

    Google Scholar 

  27. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  28. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=r1Ddp1-Rb

  29. Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., Wen, F.: Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. arXiv preprint arXiv:2101.10979 (2021)

  30. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6230–6239 (2017). https://doi.org/10.1109/CVPR.2017.660

Download references

Acknowledgment

This research is supported by the Centre for Frontier AI Research (CFAR) and Robotics-HTPO seed fund C211518008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kian Boon Koh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koh, K.B., Fernando, B. (2023). Consistency Regularization for Domain Adaptation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13808. Springer, Cham. https://doi.org/10.1007/978-3-031-25085-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25085-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25084-2

  • Online ISBN: 978-3-031-25085-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics