Abstract
Electron microscopy images of carbon nanotube (CNT) forests are difficult to segment due to the long and thin nature of the CNTs; density of the CNT forests resulting in CNTs touching, crossing, and occluding each other; and low signal-to-noise ratio electron microscopy imagery. In addition, due to image complexity, it is not feasible to prepare training segmentation masks. In this paper, we propose CNTSegNet, a dual loss, orientation-guided, self-supervised, deep learning network for CNT forest segmentation in scanning electron microscopy (SEM) images. Our training labels consist of weak segmentation labels produced by intensity thresholding of the raw SEM images and self labels produced by estimating orientation distribution of CNTs in these raw images. The proposed network extends a U-net-like encoder-decoder architecture with a novel two-component loss function. The first component is dice loss computed between the predicted segmentation maps and the weak segmentation labels. The second component is mean squared error (MSE) loss measuring the difference between the orientation histogram of the predicted segmentation map and the original raw image. Weighted sum of these two loss functions is used to train the proposed CNTSegNet network. The dice loss forces the network to perform background-foreground segmentation using local intensity features. The MSE loss guides the network with global orientation features and leads to refined segmentation results. The proposed system needs only a few-shot dataset for training. Thanks to it’s self-supervised nature, it can easily be adapted to new datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
OpenCV: K-Means Clustering in OpenCV (Aug 2022). https://docs.opencv.org/3.4/d1/d5c/tutorial_py_kmeans_opencv.html. (Accessed 12 Aug 2022)
Thresholding—skimage v0.13.1 docs (Jun 2022). http://devdoc.net/python/scikit-image-doc-0.13.1/auto_examples/xx_applications/plot_thresholding.html#id4. (Accessed 28 Jun 2022)
Abadi, P.P.S.S., et al.: Reversible tailoring of mechanical properties of carbon nanotube forests by immersing in solvents. Carbon 69, 178–187 (2014)
Aguilar, C., Comer, M., Hanhan, I., Agyei, R., Sangid, M.: 3D fiber segmentation with deep center regression and geometric clustering. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 3741–3749. IEEE (June 2021). https://doi.org/10.1109/CVPRW53098.2021.00415
Bedewy, M., Meshot, E.R., Guo, H., Verploegen, E.A., Lu, W., Hart, A.J.: Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J. Phys. Chem. C 113(48), 20576–20582 (2009)
Brandley, E., Greenhalgh, E.S., Shaffer, M.S.P., Li, Q.: Mapping carbon nanotube orientation by fast fourier transform of scanning electron micrographs. Carbon 137, 78–87 (2018). https://doi.org/10.1016/j.carbon.2018.04.063
Brieland-Shoultz, A., Tawfick, S., Park, S.J., Bedewy, M., Maschmann, M.R., Baur, J.W., Hart, A.J.: Scaling the stiffness, strength, and toughness of ceramic-coated nanotube foams into the structural regime. Adv. Func. Mater. 24(36), 5728–5735 (2014)
Cao, A., Dickrell, P.L., Sawyer, W.G., Ghasemi-Nejhad, M.N., Ajayan, P.M.: Super-compressible foamlike carbon nanotube films. Science 310(5752), 1307–1310 (2005)
Carter, R., Davis, B., Oakes, L., Maschmann, M.R., Pint, C.L.: A high areal capacity lithium-sulfur battery cathode prepared by site-selective vapor infiltration of hierarchical carbon nanotube arrays. Nanoscale 9(39), 15018–15026 (2017)
Cola, B.A., Xu, J., Cheng, C., Xu, X., Fisher, T.S., Hu, H.: Photoacoustic characterization of carbon nanotube array thermal interfaces. J. Appl. Phys. 101(5), 054313 (2007)
Cola, B.A., Xu, X., Fisher, T.S.: Increased real contact in thermal interfaces: A carbon nanotube/foil material. Appl. Phys. Lett. 90(9), 093513 (2007)
Davis, B.F., Yan, X., Muralidharan, N., Oakes, L., Pint, C.L., Maschmann, M.R.: Electrically conductive hierarchical carbon nanotube networks with tunable mechanical response. ACS Appli. Mater. Interfaces 8(41), 28004–28011 (2016)
De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013). https://doi.org/10.1126/science.1222453
Gommes, C., et al.: Image analysis characterization of multi-walled carbon nanotubes. Carbon 41(13), 2561–2572 (2003). https://doi.org/10.1016/S0008-6223(03)00375-0
Hajilounezhad, T., Bao, R., Palaniappan, K., Bunyak, F., Calyam, P., Maschmann, M.R.: Predicting carbon nanotube forest attributes and mechanical properties using simulated images and deep learning. NPJ Comput. Mater. 7(1), 1–11 (2021)
Hajilounezhad, T., et al.: Exploration of carbon nanotube forest synthesis-structure relationships using physics-based simulation and machine learning. In: IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–8 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
Hines, R., Hajilounezhad, T., Love-Baker, C., Koerner, G., Maschmann, M.R.: Growth and mechanics of heterogeneous, 3d carbon nanotube forest microstructures formed by sequential selective-area synthesis. ACS Appli. Mater. Interfaces 12(15), 17893–17900 (2020)
Iakubovskii, P.: Segmentation models pytorch. www.github.com/qubvel/segmentation_models.pytorch (2019)
Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991). https://doi.org/10.1038/354056a0
Iijima, S.: Carbon nanotubes: past, present, and future. Phys. B 323(1), 1–5 (2002). https://doi.org/10.1016/S0921-4526(02)00869-4
Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 4037–4058 (2020). https://doi.org/10.1109/TPAMI.2020.2992393
Jung, Y., Cho, Y.S., Lee, J.W., Oh, J.Y., Park, C.R.: How can we make carbon nanotube yarn stronger? Compos. Sci. Technol. 166, 95–108 (2018)
Kaniyoor, A., Gspann, T.S., Mizen, J.E., Elliott, J.A.: Quantifying alignment in carbon nanotube yarns and similar two-dimensional anisotropic systems. J. Appl. Polym. Sci. 138(37), 50939 (2021). https://doi.org/10.1002/app.50939
Kim, W., Kanezaki, A., Tanaka, M.: Unsupervised learning of image segmentation based on differentiable feature clustering. IEEE Trans. Image Process. 29, 8055–8068 (2020). https://doi.org/10.1109/TIP.2020.3011269
Koerner, G., Surya, R., Palaniappan, K., Calyam, P., Bunyak, F., Maschmann, M.R.: In-situ scanning electron microscope chemical vapor deposition as a platform for nanomanufacturing insights. In: ASME International Mechanical Engineering Congress and Exposition. vol. 85567, p. V02BT02A052 (2021)
Konopczyński, T., Kröger, T., Zheng, L., Hesser, J.: Instance Segmentation of Fibers from Low Resolution CT Scans via 3D Deep Embedding Learning. arXiv (Jan 2019). 10.48550/arXiv. 1901.01034
Maschmann, M.R.: Integrated simulation of active carbon nanotube forest growth and mechanical compression. Carbon 86, 26–37 (2015)
Maschmann, M.R., Dickinson, B., Ehlert, G.J., Baur, J.W.: Force sensitive carbon nanotube arrays for biologically inspired airflow sensing. Smart Mater. Struct. 21(9), 094024 (2012)
Maschmann, M.R., et al.: Bioinspired carbon nanotube fuzzy fiber hair sensor for air-flow detection. Adv. Mater. 26(20), 3230–3234 (2014)
Maschmann, M.R.: Visualizing strain evolution and coordinated buckling within cnt arrays by in situ digital image correlation. Adv. Func. Mater. 22(22), 4686–4695 (2012)
Maschmann, M.R., Zhang, Q., Du, F., Dai, L., Baur, J.: Length dependent foam-like mechanical response of axially indented vertically oriented carbon nanotube arrays. Carbon 49(2), 386–397 (2011)
Maschmann, M.R., Zhang, Q., Wheeler, R., Du, F., Dai, L., Baur, J.: In situ sem observation of column-like and foam-like cnt array nanoindentation. ACS Appli. Mater. Interfaces 3(3), 648–653 (2011)
Maurer, C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 265–270 (2003)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076
Park, M., et al.: Effects of a carbon nanotube layer on electrical contact resistance between copper substrates. Nanotechnology 17(9), 2294 (2006)
Pathak, S., et al.: Local relative density modulates failure and strength in vertically aligned carbon nanotubes. ACS Nano 7(10), 8593–8604 (2013)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Tawfick, S., et al.: Mechanics of capillary forming of aligned carbon nanotube assemblies. Langmuir 29(17), 5190–5198 (2013)
Trujillo, M.C.R., Alarcón, T.E., Dalmau, O.S., Zamudio Ojeda, A.: Segmentation of carbon nanotube images through an artificial neural network. Soft. Comput. 21(3), 611–625 (2016). https://doi.org/10.1007/s00500-016-2426-1
Wortmann, T., Fatikow, S.: Carbon nanotube detection by scanning electron microscopy. In: Proceedings of the Eleventh IAPR Conference on Machine Vision Applications, MVA 2009 (2009)
Zbib, A.A., Mesarovic, S.D., Lilleodden, E.T., McClain, D., Jiao, J., Bahr, D.F.: The coordinated buckling of carbon nanotube turfs under uniform compression. Nanotechnology 19(17), 175704 (2008). https://doi.org/10.1088/0957-4484/19/17/175704
Zhang, M., Atkinson, K.R., Baughman, R.H.: Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700), 1358–1361 (2004)
Acknowledgement
This work was partially supported by the National Science Foundation under award number CMMI-2026847. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nguyen, N.P., Surya, R., Maschmann, M., Calyam, P., Palaniappan, K., Bunyak, F. (2023). Self-supervised Orientation-Guided Deep Network for Segmentation of Carbon Nanotubes in SEM Imagery. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13808. Springer, Cham. https://doi.org/10.1007/978-3-031-25085-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-25085-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25084-2
Online ISBN: 978-3-031-25085-9
eBook Packages: Computer ScienceComputer Science (R0)