Skip to main content

Early-Stage Dementia Detection by Optimize Feature Weights with Ensemble Learning

  • Conference paper
  • First Online:
Advanced Communication and Intelligent Systems (ICACIS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1749))

  • 482 Accesses

Abstract

Dementia has become a serious health concern for many people above fifty years. Several types of dementia typically applied and in stages. Past studies have received a report from persons of different ages who have afflicted from long-term memory problems and constantly reflecting because of neuro-degenerative illness. Dementia is defined by irreversible and serious memory loss. Though it is more prevalent in the elder people, an increase in cases among the younger age group has stimulated professionals' interest and inspired them to examine the nerve cells, which an lead to memory lapses and difficulty remembering information stored in memory. Dementia can often be decreased to some extent if identified early enough. Additional tree classifier and Optimize learning are used to extract information from MRI Brain images and characterise dementia at initial point. The hyper-parameters achieved from XGboost were determined in order to explore different forms of mortality risk. Gradient boosting is a method that is frequently used to derive variables from independent to dependent variables, in addition to the derived variables which outcome from this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deepa, N.: E-TLCNN Classification using DenseNet on various features of hypertensive retinopathy (HR) for predicting the accuracy. In 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1648–1652. IEEE (2021)

    Google Scholar 

  2. Bari Antor, M., et al.: A comparative analysis of machine learning algorithms to predict alzheimer’s disease. J. Healthcare Eng. 2021 (2021)

    Google Scholar 

  3. Helaly, H.A., Badawy, M., Haikal, A.Y.: Deep learning approach for early detection of alzheimer’s disease. Cogn. Comput. 1–17 (2021). https://doi.org/10.1007/s12559-021-09946-2

  4. Tambe, P., Saigaonkar, R., Devadiga, N., Chitte, P.H.: Deep learning techniques for effective diagnosis of Alzheimer’s disease using MRI images. In: ITM Web of Conferences, vol. 40, p. 03021. EDP Sciences (2021)

    Google Scholar 

  5. Grueso, S., Viejo-Sobera, R.: Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer’s disease dementia: a systematic review. Alzheimer’s Res. Therapy 13(1), 1–29 (2021)

    Google Scholar 

  6. Pradhan, A., Gige, J., Eliazer, M.: detection of alzheimer’s disease (AD) in MRI images using deep learning. Int. J. Eng. Res. Technol. 10(3) (2021)

    Google Scholar 

  7. Hemalatha, B., Renukadevi, M.: Analysis of alzheimer disease prediction using machine learning techniques. Inf. Technol. Indust. 9(1), 519–525 (2021)

    Google Scholar 

  8. Guram, M.H.: Improved demntia images detection and classification using transfer learning base convulation mapping with attention layer and XGBOOST classifier. Turkish J. Comput. Math. Educ. 12(6), 217–224 (2021)

    Article  Google Scholar 

  9. Salehi, A.W., Baglat, P., Gupta, G.: Alzheimer’s disease diagnosis using deep learning techniques. Int. J. Eng. Adv. Technol 9(3), 874–880 (2020)

    Article  Google Scholar 

  10. Ryu, S.E., Shin, D.H., Chung, K.: Prediction model of dementia risk based on XGBoost using derived variable extraction and hyper parameter optimization. IEEE Access 8, 177708–177720 (2020)

    Article  Google Scholar 

  11. Stamate, D., et al.: Applying deep learning to predicting dementia and mild cognitive impairment. In: Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) IFIP International Conference on Artificial Intelligence Applications and Innovations. IFIPAICT, vol. 584, pp. 308–319. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49186-4_26

  12. Jo, T., Nho, K., Saykin, A.J.: Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data. Front. Aging Neurosci. 11, 220 (2019)

    Article  Google Scholar 

  13. Veitch, D.P., Weiner, M.W., Aisen, P.S., Beckett, L.A., Cairns, N.J., Green, R.C., Alzheimer’s Disease Neuroimaging Initiative: understanding disease progression and improving Alzheimer’s disease clinical trials: recent highlights from the Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s & Dementia 15(1), 106–152 (2019)

    Google Scholar 

  14. Goyal, S.B., Bedi, P., Rajawat, A.S., Shaw, R.N., Ghosh, A.: Multi-objective Fuzzy-swarm optimizer for data partitioning. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N. (eds.) Advanced Computing and Intelligent Technologies. LNNS, vol. 218, pp. 307–318. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2164-2_25

    Chapter  Google Scholar 

  15. Types of Dementia. https://www.healthline.com/health/dementia#types

  16. Schelke, M.W., et al.: Mechanisms of risk reduction in the clinical practice of Alzheimer’s disease prevention. Front. Aging Neurosci. 10, 96 (2018)

    Article  Google Scholar 

  17. Samper-González, J., et al.: Reproducible evaluation of classification methods in Alzheimer’s disease: Framework and application to MRI and PET data. Neuroimage 183, 504–521 (2018)

    Article  Google Scholar 

  18. Kumar, A., Das, S., Tyagi, V., Shaw, R.N., Ghosh, A.: Analysis of classifier algorithms to detect anti-money laundering. In: Bansal, J.C., Paprzycki, M., Bianchini, M., Das, S. (eds.) Computationally Intelligent Systems and their Applications. SCI, vol. 950, pp. 143–152. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0407-2_11

    Chapter  Google Scholar 

  19. Palimkar, P., Bajaj, V., Mal, A.K., Shaw, R.N., Ghosh, A.: Unique action identifier by using magnetometer, accelerometer and gyroscope: KNN approach. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N. (eds.) Advanced Computing and Intelligent Technologies. LNNS, vol. 218, pp. 607–631. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2164-2_48

    Chapter  Google Scholar 

  20. Sørensen, L., Nielsen, M., Alzheimer’s Disease Neuroimaging Initiative: ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination. J. Neurosc. Meth. 302, 66–74 (2018)

    Google Scholar 

  21. Nanni, L., Lumini, A., Zaffonato, N.: Ensemble based on static classifier selection for automated diagnosis of mild cognitive impairment. J. Neurosci. Meth. 302, 42–46 (2018)

    Article  Google Scholar 

  22. Rathore, S., Habes, M., Iftikhar, M.A., Shacklett, A., Davatzikos, C.: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. NeuroImage 155, 530–548 (2017)

    Article  Google Scholar 

  23. Faturrahman, M., Wasito, I., Hanifah, N., Mufidah, R.: Structural MRI classification for Alzheimer’s disease detection using deep belief network. In: 2017 11th International Conference on Information & Communication Technology and System (ICTS), pp. 37–42. IEEE (2017)

    Google Scholar 

  24. Galvin, J.E.: Prevention of Alzheimer’s disease: lessons learned and applied. J. Am. Geriatr. Soc. 65(10), 2128–2133 (2017)

    Article  Google Scholar 

  25. Suk, H.I., Lee, S.W., Shen, D., Alzheimer’s Disease Neuroimaging Initiative: deep ensemble learning of sparse regression models for brain disease diagnosis. Med. Image Anal. 37, 101–113 (2017)

    Google Scholar 

  26. Dolph, C.V., Alam, M., Shboul, Z., Samad, M.D., Iftekharuddin, K.M.: Deep learning of texture and structural features for multiclass Alzheimer’s disease classification. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2259–2266. IEEE (2017)

    Google Scholar 

  27. Kim, J., Lee, B.: Automated discrimination of dementia spectrum disorders using extreme learning machine and structural t1 MRI features. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1990–1993. IEEE (2017)

    Google Scholar 

  28. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  29. Imabayashi, E., et al.: Validation of the cingulate island sign with optimized ratios for discriminating dementia with Lewy bodies from Alzheimer’s disease using brain perfusion SPECT. Ann. Nucl. Med. 31(7), 536–543 (2017)

    Article  Google Scholar 

  30. Goyal, S.B., Bedi, P., Rajawat, A.S., Shaw, R.N., Ghosh, A.: Smart luminaires for commercial building by application of daylight harvesting systems. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N. (eds.) Advanced Computing and Intelligent Technologies. LNNS, vol. 218, pp. 293–305. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2164-2_24

    Chapter  Google Scholar 

  31. Alkabawi, E.M., Hilal, A.R., Basir, O.A.: Feature abstraction for early detection of multi-type of dementia with sparse auto-encoder. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3471–3476. IEEE (2017)

    Google Scholar 

  32. Bron, E.E.: Multiparametric computer-aided differential diagnosis of alzheimer’s disease and frontotemporal dementia using structural and advanced MRI. Eur. Radiol. 27(8), 3372–3382 (2017)

    Google Scholar 

  33. Bron, E.E., et al.: Multiparametric computer-aided differential diagnosis of Alzheimer’s disease and frontotemporal dementia using structural and advanced MRI. Eur. Radiol. 27(8), 3372–3382 (2017)

    Article  Google Scholar 

  34. Rajawat, A.S., Barhanpurkar, K., Goyal, S.B., Bedi, P., Shaw, R.N., Ghosh, A.: Efficient deep learning for reforming authentic content searching on big data. In: Bianchini, M., Piuri, V., Das, S., Shaw, R.N. (eds.) Advanced Computing and Intelligent Technologies. LNNS, vol. 218, pp. 319–327. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2164-2_26

    Chapter  Google Scholar 

  35. Rabeh, A.B., Benzarti, F., Amiri, H.: Diagnosis of alzheimer diseases in early step using SVM (Support Vector Machine). In: 2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV), pp. 364–367. IEEE (2016)

    Google Scholar 

  36. Liu, J., Shang, S., Zheng, K., Wen, J.R.: Multi-view ensemble learning for dementia diagnosis from neuroimaging: an artificial neural network approach. Neurocomputing 195, 112–116 (2016)

    Article  Google Scholar 

  37. De Strooper, B., Karran, E.: The cellular phase of Alzheimer’s disease. Cell 164(4), 603–615 (2016)

    Article  Google Scholar 

  38. Rajawat, A.S., et al.: Depression detection for elderly people using AI robotic systems leveraging the Nelder–Mead Method. Artificial Intelligence for Future Generation Robotics, pp. 55–70 (2021). https://doi.org/10.1016/B978-0-323-85498-6.00006-X

  39. Bron, E.E., Smits, M., Niessen, W.J., Klein, S.: Feature selection based on the SVM weight vector for classification of dementia. IEEE J. Biomed. Health Inform. 19(5), 1617–1626 (2015)

    Article  Google Scholar 

  40. Ithapu, V.K., et al.: Imaging-based enrichment criteria using deep learning algorithms for efficient clinical trials in mild cognitive impairment. Alzheimer’s Dementia 11(12), 1489–1499 (2015)

    Article  Google Scholar 

  41. Plis, S.M., et al.: Deep learning for neuroimaging: a validation study. Front. Neurosci. 8, 229 (2014)

    Article  Google Scholar 

  42. Ishii, K.: PET approaches for diagnosis of dementia. Am. J. Neuroradiol. 35(11), 2030–2038 (2014)

    Article  Google Scholar 

  43. Valkanova, V., Ebmeier K.P.: Neuroimaging in dementia. Maturitas 79(2), 202–208 (2014)

    Google Scholar 

  44. Anandh, K.R., Sujatha, C.M., Ramakrishnan, S.: Analysis of ventricles in Alzheimer MR images using coherence enhancing diffusion filter and level set method. In: 2014 International Conference on Informatics, Electronics & Vision (ICIEV), pp. 1–4. IEEE (2014)

    Google Scholar 

  45. Ramírez, J., et al.: Computer-aided diagnosis of Alzheimer’s type dementia combining support vector machines and discriminant set of features. Inf. Sci. 237, 59–72 (2013)

    Article  Google Scholar 

  46. Rajawat, A.S., Barhanpurkar, K., Shaw, R.N., Ghosh, A.: Risk detection in wireless body sensor networks for health monitoring using hybrid deep learning. In: Mekhilef, S., Favorskaya, M., Pandey, R.K., Shaw, R.N. (eds.) Innovations in Electrical and Electronic Engineering. LNEE, vol. 756, pp. 683–696. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0749-3_54

    Chapter  Google Scholar 

  47. Gerardin, E., et al.: Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage 47(4), 1476–1486 (2009)

    Article  Google Scholar 

  48. Klöppel, S., et al.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131(3), 681–689 (2008)

    Google Scholar 

  49. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanvi Mahajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahajan, T., Srivastava, J. (2023). Early-Stage Dementia Detection by Optimize Feature Weights with Ensemble Learning. In: Shaw, R.N., Paprzycki, M., Ghosh, A. (eds) Advanced Communication and Intelligent Systems. ICACIS 2022. Communications in Computer and Information Science, vol 1749. Springer, Cham. https://doi.org/10.1007/978-3-031-25088-0_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25088-0_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25087-3

  • Online ISBN: 978-3-031-25088-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics