Skip to main content

Mining Periodic k-Clique from Real-World Sparse Temporal Networks

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2022)

Abstract

In temporal networks, nodes and edges are associated with time series. To seeking the periodic pattern in temporal networks, an intuitive method is to searching periodic communities in them. However, most existing studies do not exploit the periodic pattern of communities. The only few works left do not take the sparse propriety of real-world temporal networks into consideration, such that (i) the answers searched for are few, (ii) the computation suffers from poor performance. In this paper, we propose a novel periodic community model in temporal networks, \(\sigma \)-periodic k-clique, and an efficient algorithm for enumerating all \(\sigma \)-periodic k-cliques in real-world sparse temporal networks. We first design a new data structure to store temporal networks in main memory, which can reduce the maintaining cost and support dynamic deletion of nodes and edges. Then, we propose several efficient pruning rules to eliminate unpromising nodes and edges that do not belong to any \(\sigma \)-period k-clique to reduce graph size. Next, we propose an algorithm that directly enumerates \(\sigma \)-periodic k-cliques on temporal graph to avoid redundant computation. Finally, extensive and comprehensive experiments show that our algorithm runs one to three orders of magnitudes faster and requires significantly less memory than the baseline algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, M.K., Ramamritham, K., Bhide, M.: Real time discovery of dense clusters in highly dynamic graphs: identifying real world events in highly dynamic environments. arXiv preprint arXiv:1207.0138 (2012)

  2. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)

    Article  MATH  Google Scholar 

  3. Chen, Z., Wilson, K.A., Jin, Y., Hendrix, W., Samatova, N.F.: Detecting and tracking community dynamics in evolutionary networks. In: ICDMW, pp. 318–327 (2010)

    Google Scholar 

  4. Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal clique enumeration with limited memory. In: SIGKDD, pp. 1240–1248 (2012)

    Google Scholar 

  5. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Danisch, M., Balalau, O., Sozio, M.: Listing k-cliques in sparse real-world graphs. In: WWW, pp. 589–598 (2018)

    Google Scholar 

  8. Du, X., Jin, R., Ding, L., Lee, V.E., Thornton Jr., J.H.: Migration motif: a spatial-temporal pattern mining approach for financial markets. In: SIGKDD, pp. 1135–1144 (2009)

    Google Scholar 

  9. Eppstein, D., Strash, D.: Listing all maximal cliques in large sparse real-world graphs. In: International Symposium on Experimental Algorithms, pp. 364–375 (2011)

    Google Scholar 

  10. Fratkin, E., Naughton, B.T., Brutlag, D.L., Batzoglou, S.: Motifcut: regulatory motifs finding with maximum density subgraphs. Bioinformatics 22(14), e150–e157 (2006)

    Article  Google Scholar 

  11. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive graphs. Proc. VLDB Endow. 721–732 (2005)

    Google Scholar 

  12. Gurukar, S., Ranu, S., Ravindran, B.: Commit: a scalable approach to mining communication motifs from dynamic networks. In: SIGMOD, pp. 475–489 (2015)

    Google Scholar 

  13. Jain, S., Seshadhri, C.: A fast and provable method for estimating clique counts using turán’s theorem. In: WWW, pp. 441–449 (2017)

    Google Scholar 

  14. Jain, S., Seshadhri, C.: The power of pivoting for exact clique counting. In: WSDM, pp. 268–276 (2020)

    Google Scholar 

  15. Jin, R., Xiang, Y., Ruan, N., Fuhry, D.: 3-hop: a high-compression indexing scheme for reachability query. In: SIGMOD, pp. 813–826 (2009)

    Google Scholar 

  16. Li, R.H., Su, J., Qin, L., Yu, J.X., Dai, Q.: Persistent community search in temporal networks. In: ICDE, pp. 797–808 (2018)

    Google Scholar 

  17. Li, R., Gao, S., Qin, L., Wang, G., Yang, W., Yu, J.X.: Ordering heuristics for k-clique listing. Proc. VLDB Endow. (2020)

    Google Scholar 

  18. Lin, Y.R., Chi, Y., Zhu, S., Sundaram, H., Tseng, B.L.: Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In: WWW, pp. 685–694 (2008)

    Google Scholar 

  19. Liu, P., Wang, M., Cui, J., Li, H.: Top-k competitive location selection over moving objects. Data Sci. Eng. 6(4), 392–401 (2021)

    Article  Google Scholar 

  20. Ma, S., Hu, R., Wang, L., Lin, X., Huai, J.: Fast computation of dense temporal subgraphs. In: ICDE, pp. 361–372 (2017)

    Google Scholar 

  21. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: Scandinavian Workshop on Algorithm Theory, pp. 260–272 (2004)

    Google Scholar 

  22. Presson, A.P., et al.: Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome. BMC Syst. Biol. 2(1), 1–21 (2008)

    Article  Google Scholar 

  23. Qin, H., Li, R., Yuan, Y., Wang, G., Yang, W., Qin, L.: Periodic communities mining in temporal networks: concepts and algorithms. IEEE TKDE (2020)

    Google Scholar 

  24. Rossetti, G., Pappalardo, L., Pedreschi, D., Giannotti, F.: Tiles: an online algorithm for community discovery in dynamic social networks. Mach. Learn. 106(8), 1213–1241 (2017)

    Article  MathSciNet  Google Scholar 

  25. Takeaki, U.: Implementation issues of clique enumeration algorithm. Special issue: Theor. Comput. Sci. Discrete Math. Progress Inform. 9, 25–30 (2012)

    Google Scholar 

  26. Tsourakakis, C.: The k-clique densest subgraph problem. In: WWW, pp. 1122–1132 (2015)

    Google Scholar 

  27. Wu, H., et al.: Core decomposition in large temporal graphs. In: IEEE Conference on Big Data, pp. 649–658 (2015)

    Google Scholar 

  28. Wu, H., Huang, Y., Cheng, J., Li, J., Ke, Y.: Reachability and time-based path queries in temporal graphs. In: ICDE, pp. 145–156 (2016)

    Google Scholar 

  29. Yang, Y., Yu, J.X., Gao, H., Pei, J., Li, J.: Mining most frequently changing component in evolving graphs. WWW, vol. 17, no. 3, pp. 351–376 (2014)

    Google Scholar 

  30. Yang, Y., Yan, D., Wu, H., Cheng, J., Zhou, S., Lui, J.C.: Diversified temporal subgraph pattern mining. In: SIGKDD, pp. 1965–1974 (2016)

    Google Scholar 

  31. Zhang, Q., Guo, D., Zhao, X., Li, X., Wang, X.: Seasonal-periodic subgraph mining in temporal networks. In: CIKM, pp. 2309–2312 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by (i) National Key Research and Development Program of China 2020AAA0108503, (ii) NSFC Grants 62072034, 62002036, (iii)Natural Science Foundation of Chongqing CSTC cstc2021jcyj-msxmX0859.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Hua Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, Z., Qin, H., Li, RH., Dai, Y., Wang, G., Li, Y. (2023). Mining Periodic k-Clique from Real-World Sparse Temporal Networks. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13421. Springer, Cham. https://doi.org/10.1007/978-3-031-25158-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25158-0_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25157-3

  • Online ISBN: 978-3-031-25158-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics