Skip to main content

A Temporal-Context-Aware Approach for Individual Human Mobility Inference Based on Sparse Trajectory Data

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13421))

  • 894 Accesses

Abstract

Inferring individual human mobility at a given time is not only beneficial for personalized location-based services, but also crucial for trajectory tracking of the confirmed cases in the context of the COVID-19 pandemic. However, individual generated trajectory data using mobile Apps is characterized by implicit feedback, which means only a few individual-location interactions can be observed. Existing studies based on such sparse trajectory data are not sufficient to infer individual’s missing mobility in his/her historical trajectory and further predict individual’s future mobility given a specific time. To address this concern, in this paper, we propose a temporal-context-aware approach that incorporates multiple factors to model the time sensitive individual-location interactions in a bottom-up way. Based on the idea of feature fusion, the driving effect of heterogeneous information such as time, space, category and sentiment on individual’s mobile behavior is gradually strengthened, so that the temporal context when a check-in occurs can be accurately depicted. We leverage Bayesian Personalized Ranking (BPR) to optimize the model, where a novel negative sampling method is employed to alleviate data sparseness. Based on three real-world datasets, we evaluate the proposed approach with regard to two different tasks, namely, missing mobility inference and future mobility prediction at a given time. The empirical results encouragingly demonstrate that our approach outperforms multiple baselines in terms of two evaluation metrics, i.e., accuracy and average percentile rank.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.dianping.com/.

References

  1. Cao, J., Xu, S., Zhu, X., Lv, R., Liu, B.: Effective fine-grained location prediction based on user check-in pattern in LBSNs. J. Netw. Comput. Appl. 108, 64–75 (2018)

    Article  Google Scholar 

  2. Feng, J., et al.: Deepmove: Predicting human mobility with attentional recurrent networks. In: Proceedings of the 2018 World Wide Web Conference, pp. 1459–1468 (2018)

    Google Scholar 

  3. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representation, pp. 1–15 (2015)

    Google Scholar 

  4. Luca, M., Barlacchi, G., Lepri, B., Pappalardo, L.: A survey on deep learning for human mobility. ACM Comput. Surv. (CSUR) 55(1), 1–44 (2021)

    Article  Google Scholar 

  5. Luo, Y., Cai, X., Zhang, Y., Xu, J., Yuan, X.: Multivariate time series imputation with generative adversarial networks. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 1603–1614 (2018)

    Google Scholar 

  6. Ma, C., Zhang, Y., Wang, Q., Liu, X.: Point-of-interest recommendation: exploiting self-attentive autoencoders with neighbor-aware influence. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 697–706 (2018)

    Google Scholar 

  7. Mahajan, R., Mansotra, V.: Predicting geolocation of tweets: using combination of CNN and BiLSTM. Data Sci. Eng. 6(4), 402–410 (2021)

    Article  Google Scholar 

  8. Miller, H.J.: Tobler’s first law and spatial analysis. Ann. Assoc. Am. Geogr. 94(2), 284–289 (2004)

    Article  Google Scholar 

  9. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pp. 452–461 (2009)

    Google Scholar 

  10. Teixeira, D.D.C., Viana, A.C., Almeida, J.M., Alvim, M.S.: The impact of stationarity, regularity, and context on the predictability of individual human mobility. ACM Trans. Spat. Algorithms Syst. 7(4), 1–24 (2021)

    Article  Google Scholar 

  11. Wang, P., Yang, L.T., Peng, Y., Li, J., Xie, X.: M\(^2\)T\({^2}\): the multivariate multistep transition tensor for user mobility pattern prediction. IEEE Trans. Netw. Sci. Eng. 7(2), 907–917 (2020)

    Article  MathSciNet  Google Scholar 

  12. Xi, D., Zhuang, F., Liu, Y., Gu, J., Xiong, H., He, Q.: Modelling of Bi-directional spatio-temporal dependence and users’ dynamic preferences for missing poi check-in identification. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 5458–5465 (2019)

    Google Scholar 

  13. Xia, T., et al.: Attnmove: History enhanced trajectory recovery via attentional network. arXiv preprint arXiv:2101.00646 (2021)

  14. Xu, F., Tu, Z., Li, Y., Zhang, P., Fu, X., Jin, D.: Trajectory recovery from Ash: user privacy is NOT preserved in aggregated mobility data. In: Proceedings of the 26th International Conference on World Wide Web, p. 1241–1250 (2017)

    Google Scholar 

  15. Xu, J., Zhao, J., Zhou, R., Liu, C., Zhao, P., Zhao, L.: Predicting destinations by a deep learning based approach. IEEE Trans. Knowl. Data Eng. 33(2), 651–666 (2021)

    Article  Google Scholar 

  16. Xu, S., Fu, X., Cao, J., Liu, B., Wang, Z.: Survey on user location prediction based on geo-social networking data. World Wide Web 23(3), 1621–1664 (2020). https://doi.org/10.1007/s11280-019-00777-8

    Article  Google Scholar 

  17. Xu, S., Pi, D., Cao, J., Fu, X.: Hierarchical temporal-spatial preference modeling for user consumption location prediction in geo-social networks. Inf. Process. Manage. 58(6), 102715 (2021)

    Article  Google Scholar 

  18. Yang, D., Fankhauser, B., Rosso, P., Cudre-Mauroux, P.: Location prediction over sparse user mobility traces using RNNs: flashback in hidden states! In: Proceedings of the 29th International Joint Conference on Artificial Intelligence, pp. 2184–2190 (2020)

    Google Scholar 

  19. Yang, D., Qu, B., Yang, J., Cudre-Mauroux, P.: Revisiting user mobility and social relationships in LBSNs: a hypergraph embedding approach. In: Proceedings of the 2019 World Wide Web Conference, pp. 2147–2157 (2019)

    Google Scholar 

  20. Yang, D., Qu, B., Yang, J., Cudré-Mauroux, P.: Lbsn2vec++: heterogeneous hypergraph embedding for location-based social networks. IEEE Trans. Knowl. Data Eng. 34(4), 1843–1855 (2022)

    Google Scholar 

  21. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs. IEEE Trans. Syst. Man Cybern. Syst. 45(1), 129–142 (2015)

    Article  Google Scholar 

  22. Yu, F., Cui, L., Guo, W., Lu, X., Li, Q., Lu, H.: A category-aware deep model for successive poi recommendation on sparse check-in data. In: Proceedings of the 2020 World Wide Web Conference, pp. 1264–1274 (2020)

    Google Scholar 

  23. Zhan, Y., Kyllo, A., Mashhadi, A., Haddadi, H.: Privacy-aware human mobility prediction via adversarial networks. arXiv preprint arXiv:2201.07519 (2022)

  24. Zhang, C., Zhao, K., Chen, M.: Beyond the limits of predictability in human mobility prediction: Context-transition predictability. In: IEEE Transactions on Knowledge and Data Engineering, pp. 1–14 (2022)

    Google Scholar 

  25. Zhang, M., Li, B., Wang, K.: HGTPU-Tree: an improved index supporting similarity query of uncertain moving objects for frequent updates. In: Li, J., Wang, S., Qin, S., Li, X., Wang, S. (eds.) ADMA 2019. LNCS (LNAI), vol. 11888, pp. 135–150. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35231-8_10

    Chapter  Google Scholar 

  26. Zhang, Q., Gao, J., Wu, J.T., Cao, Z., Dajun Zeng, D.: Data science approaches to confronting the covid-19 pandemic: a narrative review. Philos. Trans. Roy. Soc. A 380(2214), 20210127 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Jiangsu Province (No. BK20210280), the Fundamental Research Funds for the Central Universities (NO. NS2022089), the Jiangsu Provincial Innovation and Entrepreneurship Doctor Program under Grants No. JSSCBS20210185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, S., Guan, D., Ma, Z., Meng, Q. (2023). A Temporal-Context-Aware Approach for Individual Human Mobility Inference Based on Sparse Trajectory Data. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13421. Springer, Cham. https://doi.org/10.1007/978-3-031-25158-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25158-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25157-3

  • Online ISBN: 978-3-031-25158-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics