Skip to main content

Abstract

The complexity present in products does not only affect development time, it also has impacts on production, for example: production costs, manufacturing lead times, quality and customer satisfaction. The complexity of the product will have a profound impact on the manufacturing organization and the product management style. A complex product generally consists of a large number of components, elements or agents, which interact with one another and with the environment. A system or product would be more complex, if there are more parts or components, and more connections between them. The main objective of this article is to propose a methodology to measure the complexity in a mechatronic product. In the course of proposing this methodology, several methodologies used by different authors to measure this variable are studied. The proposed methodology is applied to measure the complexity of four products manufactured and marketed by a Brazilian company. The proposed methodology uses tools such as the DSM (Design Structure Matrix) to support the calculation of the complexity between the interconnections of the subsystems of the products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Carvalho, R.A., da Hora, H., Fernandes, R.: A process for designing innovative mechatronic products. Int. J. Prod. Econ. 231, 107887 (2021). https://doi.org/10.1016/j.ijpe.2020.107887

    Article  Google Scholar 

  2. Ferreira, F., Faria, J., Azevedo, A., Luisa, A.: International journal of information management product lifecycle management in knowledge intensive collaborative environments : an application to automotive industry. Int. J. Inf. Manage. 37(1), 1474–1487 (2017). https://doi.org/10.1016/j.ijinfomgt.2016.05.006

    Article  Google Scholar 

  3. Bakhshi, J., Ireland, V., Gorod, A.: Clarifying the project complexity construct: Past, present and future. Int. J. Proj. Manag. 34, 1199–1213 (2016). https://doi.org/10.1016/j.ijproman.2016.06.002

    Article  Google Scholar 

  4. Bolaños, R.D.S., Barbalho, S.C.M.: Exploring product complexity and prototype lead-times to predict new product development cycle-times. Int. J. Prod. Econ. 235, 108077 (2021). https://doi.org/10.1016/j.ijpe.2021.108077

    Article  Google Scholar 

  5. Bolaños, R.D.S., Valdiero, A.C., Rasia, L.A., Ferreira, J.C.E.: Identifying the trend of research on mechatronic projects. In: Canciglieri Junior, O., Noël, F., Rivest, L., Bouras, A. (eds.) Product Lifecycle Management. Green and Blue Technologies to Support Smart and Sustainable Organizations. PLM 2021. IFIP Advances in Information and Communication Technology, vol 640. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94399-8_3

  6. Kellner, A., Hehenberger, P., Weingartner, L., Friedl, M.: Design and use of system models in mechatronic system design (2015). https://doi.org/10.1109/SysEng.2015.7302747

  7. Shenhar, A.J., Dvir, D.: Reinventing project management: the diamond approach to successful growth and innovation by aaron shenhar and dov dvir. J. Prod. Innov .Manag. - J PROD Innov. Manag. 25, 635–637 (2008). https://doi.org/10.1111/j.1540-5885.2008.00327_2.x

  8. Novak, S., Eppinger, S.: Sourcing by design: product complexity and the supply chain. Manage. Sci. 47, 189–204 (2001). https://doi.org/10.1287/mnsc.47.1.189.10662

    Article  Google Scholar 

  9. Kim, J., Wilemon, D.: Sources and assessment of complexity in NPD project. R&D Manag. 33, 15–30 (2003). https://doi.org/10.1111/1467-9310.00278

    Article  Google Scholar 

  10. Ahmadinejad,A., Afshar, A.: Complexity management in mechatronic product development based on structural criteria. In: Mechatronics (ICM) , pp. 7–12. IEEE (2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5971266

  11. Pugh, S.: Total Design Integrated Methods for Successful Product Engineering. Addison-Wesley Publishing Company, Boston (1991)

    Google Scholar 

  12. Moulianitis, V.C., Aspragathos, N.A., Dentsoras, A.J.: A model for concept evaluation in design - An application to mechatronics design of robot grippers. Mechatronics 14(6), 599–622 (2004). https://doi.org/10.1016/j.mechatronics.2003.09.001

    Article  Google Scholar 

  13. Meyer, M., Utterback, J.: Product development cycle time and commercial success. Eng. Manag. IEEE Trans. 42, 297–304 (1995). https://doi.org/10.1109/17.482080

    Article  Google Scholar 

  14. Danilovic, M., Browning, T.R.: Managing complex product development projects with design structure matrices and domain mapping matrices. Int. J. Proj. Manag. 25(3), 300–314 (2007). https://doi.org/10.1016/j.ijproman.2006.11.003

    Article  Google Scholar 

  15. Clark, K., Fujimoto, T.: Product development performance: strategy. Organ. Manag. World Auto Ind. 15(2). Boston (1991)

    Google Scholar 

  16. Jacobs, M., Swink, M.: Product portfolio architectural complexity and operational performance: Incorporating the roles of learning and fixed assets. J. Oper. Manag. - J OPER Manag 29, 677–691 (2011). https://doi.org/10.1016/j.jom.2011.03.002

    Article  Google Scholar 

  17. Braun, S.C., Lindemann, U.: The influence of structural complexity on product costs. In: 2008 IEEE International Conference on Industrial Engineering and Engineering Management IEEM 2008, pp. 273–277. IEEE (2008). https://doi.org/10.1109/IEEM.2008.4737873

  18. Bolaños, R.D.S., Barbalho, S.C.M.: Analisis de la literatura sobre la complejidad de productos mecatrónicos e impacto en factores críticos de suceso en proyectos de desarrollo de productos. Congeso. Iberoamecano Ing. Proy. (2016)

    Google Scholar 

  19. Barbalho, S.C.M., de Carvalho, M.M., Tavares, P.M., Llanos, C.H., Leite, G.A.: Exploring the relation among product complexity, team seniority, and project performance as a path for planning new product development projects: a predictive model applying the system dynamics theory. IEEE Trans. Eng. Manag., 1–14 (2019). doi: https://doi.org/10.1109/TEM.2019.2936502

  20. Barbalho, S.C.M., Rozenfeld, H.: Mechatronic reference model (MRM) for new product development: Validation and results [Modelo de referência para o processo de desenvolvimento de produtos mecatrônicos (MRM): Validação e resultados de uso]. Gest. e Prod. 20(1), 162–179 (2013). https://doi.org/10.1590/S0104-530X2013000100012

    Article  Google Scholar 

  21. Chapman, R., Hyland, P.: Complexity and learning behaviors in product innovation. Technovation 24(7), 553–561 (2004). https://doi.org/10.1016/S0166-4972(02)00121-9

    Article  Google Scholar 

  22. Pugh, S.: Total Design: Integrated Methods for Successful Product Engineering. Addison-Wesley Publishing Company, Boston (1991)

    Google Scholar 

  23. Hobday, M.: Product complexity innovation and industrial organisation. Res. Policy 26(6), 689–710 (1998). https://doi.org/10.1016/S0048-7333(97)00044-9

    Article  Google Scholar 

  24. McCarthy, I.P., Tsinopoulos, C., Allen, P., Rose-Anderssen, C.: New product development as a complex adaptive system of decisions. J. Prod. Innov. Manag. 23(5), 437–456 (2006). https://doi.org/10.1111/j.1540-5885.2006.00215.x

    Article  Google Scholar 

  25. Mousavi, S.M., Tavakkoli-Moghaddam, R., Vahdani, B., Hashemi, H., Sanjari, M.J.: A new support vector model-based imperialist competitive algorithm for time estimation in new product development projects. Robot. Comput. Integr. Manuf. 29(1), 157–168 (2013). https://doi.org/10.1016/j.rcim.2012.04.006

    Article  Google Scholar 

  26. Zhang,Z., Luo, Q.: A grey measurement of product complexity. In: Conference Proceedings - International Conference on Systems, Man and Cybernetics, pp. 2176–2180 (2007). https://doi.org/10.1109/ICSMC.2007.4413624

  27. Hehenberger, P., Poltschak, F., Zeman, K., Amrhein, W.: Hierarchical design models in the mechatronic product development process of synchronous machines. Mechatronics 20(8), 864–875 (2010). https://doi.org/10.1016/j.mechatronics.2010.04.003

    Article  Google Scholar 

  28. Ahmadinejad, A., Afshar, A.: Complexity management in mechatronic product development based on structural criteria. In: 2011 IEEE International Conference on Mechatronics, ICM 2011 – Proceedings, April. 2011. https://doi.org/10.1109/ICMECH.2011.5971266

  29. Tastekin, S.Y., Erten, Y.M., Bilgen, S.: Software product complexity estimation using grey measurement. In: Proceedings - 39th Euromicro Conference on Software Engineering and Advanced Applications SEAA 2013, pp. 308–312 (2013). https://doi.org/10.1109/SEAA.2013.42

  30. Medina, L.A., Collet, M., Cruz, G., Pacheco, T.N., Kremer, G.E.O.: Developing design complexity metrics for medical device development, pp. 2562–2571 (2013)

    Google Scholar 

  31. Park, K., Kremer, G.E.O.: Assessment of static complexity in design and manufacturing of a product family and its impact on manufacturing performance. Int. J. Prod. Econ. 169, 215–232 (2015). https://doi.org/10.1016/j.ijpe.2015.07.036

    Article  Google Scholar 

  32. Diagne, S., Coulibaly, A., De Beuvron, F.D.B.: Complex product modeling based on a Multi-solution eXtended Conceptual Design Semantic Matrix for behavioral performance assessment. Comput. Ind. 75, 101–115 (2016). https://doi.org/10.1016/j.compind.2015.06.003

    Article  Google Scholar 

  33. Badrous, S., Elmaraghy, H.: A model for measuring complexity of automated and hybrid assembly systems. Int. J. Adv. Manuf. Technol. 62, 813–833 (2012). https://doi.org/10.1007/s00170-011-3844-y

    Article  Google Scholar 

  34. Elmaraghy, W., Elmaraghy, H., Tomiyama, T., Monostori, L.: Complexity in engineering design and manufacturing. CIRP Ann. - Manuf. Technol. 61(2), 793–814 (2012). https://doi.org/10.1016/j.cirp.2012.05.001

    Article  Google Scholar 

  35. Frizelle, G., Woodcock, E.: Measuring complexity as an aid to developing operational strategy. J. Oper. & Prod. Manag. (1995)

    Google Scholar 

  36. Sharman, D.M., Yassine, A.A.: Characterizing complex product architectures. Syst. Eng. 7(1), 35–60 (2004). https://doi.org/10.1002/sys.10056

    Article  Google Scholar 

  37. Schlick, C.M., Beutner, E., Duckwitz, S., Licht, T.: A complexity measure for new product development projects. In: 2007 IEEE International Engineering Management Conference, pp. 143–150 (2007). https://doi.org/10.1109/IEMC.2007.5235079

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruben Dario Solarte Bolaños , Sanderson César Macêdo Barbalho , Antonio Carlos Valdiero , Joao Carlos Espindola Ferreira or Alan Mavignier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bolaños, R.D.S., Barbalho, S.C.M., Valdiero, A.C., Ferreira, J.C.E., Mavignier, A. (2023). Measuring Static Complexity in Mechatronic Products. In: Noël, F., Nyffenegger, F., Rivest, L., Bouras, A. (eds) Product Lifecycle Management. PLM in Transition Times: The Place of Humans and Transformative Technologies. PLM 2022. IFIP Advances in Information and Communication Technology, vol 667. Springer, Cham. https://doi.org/10.1007/978-3-031-25182-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25182-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25181-8

  • Online ISBN: 978-3-031-25182-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics