Skip to main content

The Potential Role of RNA “Writer” TRMT61B in the Immune Regulation of Breast Cancer

  • Conference paper
  • First Online:
Biomedical and Computational Biology (BECB 2022)

Abstract

Complex signatures expressed at the genetic, transcriptional, and epigenetic levels influence tumorigenesis and evolution in breast cancer. A growing body of evidence supports the close association of RNA modification with the epigenetic regulation of the immune response. However, the mechanism of RNA modification “writers” in the immunity of breast cancer remains indeterminacy. We analyzed genomic alterations in 8236 breast cancer samples from the cBio portal database. Correlations between RNA “writers” and the expression of immunomodulators, including immunosuppressants, immunostimulants, and MHC molecules, were calculated using the TIMER and TISIDB databases. Our analysis confirmed that abnormalities in four classes of RNA “writers” were significantly correlated with poor prognosis in breast cancer. In addition, abnormal expression of TRMT61B, a tumor-associated RNA “writer”, may be associated with patients prognosis, immune infiltration levels, and expression of immunomodulators in breast cancer patients. Our results suggest that TRMT61B may serve as a biological marker of breast cancer prognosis and a potential drug target, providing a novel idea for the future therapy of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021)

    Article  PubMed  Google Scholar 

  2. Quail, D.F., Joyce, J.A.: Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lian, H., Wang, Q.-H., Zhu, C.-B., Ma, J., Jin, W.-L.: Deciphering the epitranscriptome in cancer. Trends Cancer 4, 207–221 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. Huang, Z., et al.: Prognostic significance and tumor immune microenvironment heterogenicity of m5C RNA methylation regulators in triple-negative breast cancer. Front. Cell Dev. Biol. 9, 919 (2021)

    Google Scholar 

  5. Li, B., et al.: Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 17, 1–16 (2016)

    Article  Google Scholar 

  6. Cai, C., et al.: M6A “Writer” gene METTL14: a favorable prognostic biomarker and correlated with immune infiltrates in rectal cancer. Front. Oncol. 11, 2224 (2021)

    Google Scholar 

  7. Li, X., Ma, S., Deng, Y., Yi, P., Yu, J.: Targeting the RNA m6A modification for cancer immunotherapy. Mol. Cancer 21, 1–16 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harao, M., et al.: 4-1BB–enhanced expansion of CD8+ TIL from triple-negative breast cancer unveils mutation-specific CD8+ T cells. Cancer Immunol. Res. 5, 439–445 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deepak, K.G.K., et al.: Tumor microenvironment: challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol. Res. 153, 104683 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. Kumari, K., Groza, P., Aguilo, F.: Regulatory roles of RNA modifications in breast cancer. NAR Cancer 3, zcab036 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boccaletto, P., et al.: MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46, D303–D307 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. Dominissini, D., et al.: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, C., et al.: m6A modulates haematopoietic stem and progenitor cell specification. Nature 549, 273–276 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. Liu, N., Zhou, K.I., Parisien, M., Dai, Q., Diatchenko, L., Pan, T.: N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45, 6051–6063 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, Y., et al.: Molecular characterization and clinical relevance of m6A regulators across 33 cancer types. Mol. Cancer 18, 1–6 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu, L., et al.: N6-methyladenosine-related genomic targets are altered in breast cancer tissue and associated with poor survival. J. Cancer 10, 5447 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Woo, H.-H., Chambers, S.K.: Human ALKBH3-induced m1A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 35–46 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. Dominissini, D., et al.: The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530, 441–446 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Griseri, P., Pagès, G.: Regulation of the mRNA half-life in breast cancer. World J. Clin. Oncol. 5, 323 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Di Giammartino, D.C., Nishida, K., Manley, J.L.: Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43, 853–866 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fumagalli, D., et al.: Principles governing A-to-I RNA editing in the breast cancer transcriptome. Cell Rep. 13, 277–289 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, T.: TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 77, e108–e110 (2017). https://doi.org/10.1158/0008-5472

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ru, B., et al.: TISIDB: an integrated repository portal for tumor–immune system interactions. Bioinformatics 35, 4200–4202 (2019)

    Article  CAS  PubMed  Google Scholar 

  24. Shi, X., et al.: Next-generation sequencing identifies novel genes with rare variants in total anomalous pulmonary venous connection. EBioMedicine 38, 217–227 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Noh, J.H., Kim, K.M., McClusky, W.G., Abdelmohsen, K., Gorospe, M.: Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip. Rev. RNA 9, e1471 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zaccara, S., Ries, R.J., Jaffrey, S.R.: Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. Frye, M., Harada, B.T., Behm, M., He, C.: RNA modifications modulate gene expression during development. Science 361, 1346–1349 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qu, Y., et al.: RNA modification “writer”-mediated RNA modification patterns and tumor microenvironment characteristics of cervical cancer. Clin. Transl. Oncol. 24, 1413–1424 (2022). https://doi.org/10.1007/s12094-022-02787-x

    Article  CAS  PubMed  Google Scholar 

  29. Chen, H., et al.: Cross-talk of four types of RNA modification writers defines tumor microenvironment and pharmacogenomic landscape in colorectal cancer. Mol. Cancer 20, 29 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, J., et al.: To develop and validate the combination of RNA methylation regulators for the prognosis of patients with gastric cancer. OncoTargets Ther. 13, 10785 (2020)

    Article  CAS  Google Scholar 

  31. Zhao, Q., et al.: m6A RNA modification modulates PI3K/Akt/mTOR signal pathway in gastrointestinal cancer. Theranostics 10, 9528 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao, Y., et al.: m1A regulated genes modulate PI3K/AKT/mTOR and ErbB pathways in gastrointestinal cancer. Transl. Oncol. 12, 1323–1333 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jiang, X., et al.: The role of m6A modification in the biological functions and diseases. Signal Transduct. Target Ther. 6, 1–16 (2021)

    Google Scholar 

  34. Liu, T., Li, C., Jin, L., Li, C., Wang, L.: The prognostic value of m6A RNA methylation regulators in colon adenocarcinoma. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 25, 9435 (2019)

    CAS  Google Scholar 

  35. Qu, N., et al.: Multiple m6A RNA methylation modulators promote the malignant progression of hepatocellular carcinoma and affect its clinical prognosis. BMC Cancer 20, 1–14 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puzhen Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, P., Zhou, Y., Luo, W., Wu, L. (2023). The Potential Role of RNA “Writer” TRMT61B in the Immune Regulation of Breast Cancer. In: Wen, S., Yang, C. (eds) Biomedical and Computational Biology. BECB 2022. Lecture Notes in Computer Science(), vol 13637. Springer, Cham. https://doi.org/10.1007/978-3-031-25191-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25191-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25190-0

  • Online ISBN: 978-3-031-25191-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics