Abstract
This work aims to report how COVID-19 pandemic affects the operations of the department of Otolaryngology, in two hospitals in Campania: University Hospital “San Giovanni di Dio and Ruggi d’Aragona” of Salerno and at the hospital “A.O.R.N. A. Cardarelli” of Naples (Italy). In the last years, COVID-19 has become the main type of disease affecting subjects with possible lung infections (pneumonia). SARS-cov-2 infection has been reported as severe acute respiratory syndrome that mainly affects the respiratory system and lungs, but the virus also involved other organs such as cardiac, renal and nervous ones. In the study the attention is turned to the department of Otolaryngology because the operators are very exposed. Data were collected for the year 2019, in the absence of Covid-19, and in the year of the pandemic, 2020. The purpose of the work was to make a comparison between the situation of the department before and during the epidemic from Covid-19 to the individual hospital, in addition a comparison was made between the two hospitals.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wilson, M.P., Jack, A.S.: Coronavirus disease 2019 (COVID-19) in neurology and neurosurgery: a scoping review of the early literature. Clin. Neurol. Neurosurg. 193, 105866 (2020). https://doi.org/10.1016/j.clineuro.2020.105866
Lancet, T.: COVID-19: learning from experience. Lancet 395(10229), 1011 (2020). https://doi.org/10.1016/S0140-6736(20)30686-3
Cullen, W., Gulati, G., Kelly, B.D.: Mental health in the COVID-19 pandemic. QJM Int. J. Med. 113(5), 311–312 (2020). https://doi.org/10.1093/qjmed/hcaa110
Yuki, K., Fujiogi, M., Koutsogiannaki, S.: COVID-19 pathophysiology: a review. Clin. Immunol. 215, 108427 (2020). https://doi.org/10.1016/j.clim.2020.108427. ISSN 1521-6616
Mao, L., Jin, H., Wang, M., et al.: Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. (2020). https://doi.org/10.1001/jamaneurol.2020.1127
Li, Q., Guan, X., Wu, P., et al.: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382(13), 1199–1207 (2020)
Chan, J.F., Yuan, S., Kok, K.H., et al.: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395(10223), 514–523 (2020)
McCarty, E.B., Soldatova, L., Brant, J.A., Newman, J.G.: Innovations in otorhinolaryngology in the age of COVID-19: a systematic literature review. World J. Otorhinolaryngol. - Head Neck Surg. (2021). ISSN 2095–8811. https://doi.org/10.1016/j.wjorl.2021.01.001
XU, K., Lai, X., Liu, Z.: Suggestions on the prevention of COVID-19 for health care workers in department of otorhinolaryngology head and neck surgery (2020)
Kowalski L.P., et al.: Effect of the COVID-19 Pandemic on the activity of physicians working in the areas of head and neck surgery and otorhinolaryngology (2020)
Bianco, A., Pileggi, C., Trani, F., Angelillo, I.F.: Appropriateness of admissions and days of stay in pediatric wards of Italy. Pediatrics 112(1), 124–128 (2003)
Smeraglia, F., Basso, M.A., Famiglietti, G., Eckersley, R., Bernasconi, A., Balato, G.: Partial wrist denervation versus total wrist denervation: a systematic review of the literature. Hand Surg Rehabil. 39(6), 487–491 (2020)
Siu, A.L., Manning, W.G., Benjamin, B.: Patient, provider and hospital characteristics associated with inappropriate hospitalization. Am. J. Public Health 80, 1253–1256 (1990)
Davido, A., Nicoulet, I., Levy, A., Lang, T.: Appropriateness of admission in an emergency department: reliability of assessment and causes of failure. Qual. Assur. Health Care 3, 227–234 (1991)
Angelillo, I.F., Ricciardi, G., Nante, N., Boccia, A., Collaborative Group: Appropriateness of hospital utilisation in Italy. Public Health. 114, 9–14 (2000)
Smeraglia, F., Soldati, A., Orabona, G., Ivone, A., Balato, G., Pacelli, M.: Trapeziometacarpal arthrodesis: is bone union necessary for a good outcome? J. Hand Surg. Eur. 40(4), 356–361 (2015)
Ascione, T., et al.: Clinical and microbiological outcomes in haematogenous spondylodiscitis treated conservatively. Eur. Spine J. 26(4), 489–495 (2017). https://doi.org/10.1007/s00586-017-5036-4
Houghton, A., Bowling, A., Jones, I., Clarke, K.: Appropriateness of admission and the last 24 hours of hospital care in medical wards in an east London teaching group hospital. Int. J. Qual. Health Care: J. Int. Soc. Qual. Health Care 8(6), 543–553 (1996). https://doi.org/10.1093/intqhc/8.6.543
Coast, J., Peters, T.J., Ingles, A.: Factors associated with inappropriate emergency hospital admission in the UK. Int. J. Qual. Healthc. 8(1), 31–39 (1996). https://doi.org/10.1093/intqhc/8.1.31
De La Fuente, O.D., Peiro, S., Marchan, C., Portella, E.: Inappropriate hospitalization. Eur. J. Public Health 6, 126–132 (1996)
Trunfio, T.A., Scala, A., Borrelli, A., Sparano, M., Triassi, M., Improta, G.: Application of the lean six sigma approach to the study of the LOS of patients who undergo laparoscopic cholecystectomy at the San Giovanni di Dio and Ruggi d’Aragona University Hospital. In: 2021 5th International Conference on Medical and Health Informatics (ICMHI 2021), pp. 50–54. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3472813.3472823
Kane, M., et al.: Lean manufacturing improves emergency department throughput and patient satisfaction. JONA J. Nurs. Adm. 45(9), 429–434 (2015)
Scala, A., Trunfio, T.A., Borrelli, A., Ferrucci, G., Triassi, M., Improta, G.: Modelling the hospital length of stay for patients undergoing laparoscopic cholecystectomy through a multiple regression model. In: 2021 5th International Conference on Medical and Health Informatics, pp. 68–72 (2021)
Cesarelli, M., Romano, M., Bifulco, P., Improta, G., D’Addio, G.: An application of symbolic dynamics for FHRV assessment. Stud. Health Technol. Inform. 180, 123–127 (2012)
Belle, A., Thiagarajan, R., Soroushmehr, S.M., Navidi, F., Beard, D.A., Najarian, K.: Big data analytics in healthcare. BioMed. Res. Int. 2015 (2015)
Bao, S.D., Zhang, Y.T., Shen, L.F.: Physiological signal based entity authentication for body area sensor networks and mobile healthcare systems. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 2455–2458. IEEE (2006)
Mazumdar, M., et al.: Comparison of statistical and machine learning models for healthcare cost data: a simulation study motivated by Oncology Care Model (OCM) data. BMC Health Serv. Res. 20(1), 1–12 (2020)
Giovanni, I., Pasquale, N., Carmela, S.L., Maria, T.: Health worker monitoring: Kalman-based software design for fault isolation in human breathing. In: EMSS 2014 Proceedings (2014)
Cortesi, P.A., et al.: Cost-effectiveness and budget impact of emicizumab prophylaxis in haemophilia a patients with inhibitors. Thromb. Haemost. 120, 216–228 (2019)
Ponsiglione, A.M., Cosentino, C., Cesarelli, G., Amato, F., Romano, M.: A comprehensive review of techniques for processing and analyzing fetal heart rate signals. Sensors 21, 6136 (2021). https://doi.org/10.3390/s21186136
Ponsiglione, A.M., Amato, F., Romano, M.: Multiparametric investigation of dynamics in fetal heart rate signals. Bioengineering 9, 8 (2022). https://doi.org/10.3390/bioengineering9010008
Obenshain, M.K.: Application of data mining techniques to healthcare data. Infect. Control Hosp. Epidemiol. 25(8), 690–695 (2004)
Benneyan, J.C.: The design, selection, and performance of statistical control charts for healthcare process improvement. Int. J. Six Sigma Compet. Adv. 4(3), 209–239 (2008)
D’Alessio, R., Laino, A., Trunfio, T.A., Deli, R.: Measure and comparison of facial attractiveness indices through photogrammetry and statistical analysis. In: 2021 5th International Conference on Medical and Health Informatics (ICMHI 2021), pp. 26–31. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3472813.3472819
Alfano, R., et al.: Using Statistical Analysis and Logistic Regression to study the effect of CoViD-19 on hospital activities of the COU General surgery and kidney transplants. In: 2021 International Symposium on Biomedical Engineering and Computational Biology (2021)
Petrillo, A., Picariello, A., Santini, S., Scarciello, B., Sperli, G.: Model-based vehicular prognostics framework using Big data architecture. Comput. Ind. 115, 103177 (2020). https://doi.org/10.1016/j.compind.2019.103177
Han, Q., Molinaro, C., Picariello, A., Sperli, G., Subrahmanian, V.S., Xiong, Y.: Generating fake documents using probabilistic logic graphs. IEEE Trans. Dependable Secure Computing (2021). https://doi.org/10.1109/TDSC.2021.3058994
Amato, F., Castiglione, A., Moscato, V., Picariello, A., Sperlì, G.: Multimedia summarization using social media content. Multimed. Tools Appl. 77(14), 17803–17827 (2018). https://doi.org/10.1007/s11042-017-5556-2
Amato, F., et al.: Multimedia story creation on social networks. Futur. Gener. Comput. Syst. 86, 412–420 (2018). https://doi.org/10.1016/j.future.2018.04.006
Amato, F., Moscato, V., Picariello, A., Piccialli, F., Sperlí, G.: Centrality in heterogeneous social networks for lurkers detection: an approach based on hypergraphs. Concurr. Comput. Pract. Exp. 30(3), e4188 (2018). https://doi.org/10.1002/cpe.4188
Amato, F., Moscato, V., Picariello, A., Sperlí, G.: Diffusion algorithms in multimedia social networks: a preliminary model. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp. 844–851 (2017). https://doi.org/10.1145/3110025.3116207
Moscato, V., Picariello, A., Sperlí, G.: A benchmark of machine learning approaches for credit score prediction. Expert Syst. Appl. 165, 113986 (2021). https://doi.org/10.1016/j.eswa.2020.113986
Di Girolamo, R., Esposito, C., Moscato, V., Sperlí, G.: Evolutionary game theoretical on-line event detection over tweet streams. Knowl.-Based Syst. 211, 106563 (2021). https://doi.org/10.1016/j.knosys.2020.106563
Sperlí, G.: A deep learning based community detection approach. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pp. 1107–1110 (2019). https://doi.org/10.1145/3297280.3297574
De Santo, A., Galli, A., Gravina, M., Moscato, V., Sperlì, G.: Deep Learning for HDD health assessment: an application based on LSTM. IEEE Trans. Comput. 71(1), 69–80 (2020). https://doi.org/10.1109/TC.2020.3042053
La Gatta, V., Moscato, V., Pennone, M., Postiglione, M., Sperlí, G.: Music recommendation via hypergraph embedding. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3146968
Trunfio, T.A., et al.: Multiple regression model to analyze the total LOS for patients undergoing laparoscopic appendectomy. BMC Med. Inform. Decis. Making 22(1), 1–8 (2022)
Improta, G., Borrelli, A., Triassi, M.: Machine Learning and lean six sigma to assess how COVID-19 has changed the patient management of the complex operative unit of neurology and stroke unit: a single center study. Int. J. Environ. Res. Public Health 19(9), 5215 (2022)
Scala, A., et al.: Regression models to study the total LOS related to valvuloplasty. Int. J. Environ. Res. Public Health 19(5), 3117 (2022)
Trunfio, T.A., Borrelli, A., Improta, G.: Is it possible to predict the length of stay of patients undergoing hip-replacement surgery? Int. J. Environ. Res. Public Health 19(10), 6219 (2022)
Provenzano, F., D’Arrigo G., Zoccali, C., Tripepi, G.: La regressione logistica nella ricerca clinica. CNR-IBIM, Unità di Ricerca di Epidemiologia Clinica e Fisiopatologia delle Malattie Renali e dell’Ipertensione Arteriosa, Reggio Calabria (2011)
Balan, S., Gawade, T., Tasgaonkar, A.A.: A machine learning approachfor prediction of length of stay for the kid’s inpatient database. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 5980–5982 (2019). https://doi.org/10.1109/EMBC44109.2020.9175889
Converso, G., Improta, G., Mignano, M., Santillo, L.C.: A simulation approach for agile production logic implementation in a hospital emergency unit. In: Fujita, H., Guizzi, G. (eds.) SoMeT 2015. CCIS, vol. 532, pp. 623–634. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22689-7_48
Improta, G., et al.: Evaluation of medical training courses satisfaction: qualitative analysis and analytic hierarchy process. In: Jarm, T., Cvetkoska, A., Mahnič-Kalamiza, S., Miklavcic, D. (eds.) EMBEC 2020. IP, vol. 80, pp. 518–526. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64610-3_59
Ponsiglione, A.M., Amato, F., Cozzolino, S., Russo, G., Romano, M., Improta, G.: A hybrid analytic hierarchy process and likert scale approach for the quality assessment of medical education programs. Mathematics 10(9), 1426 (2022)
Improta, G., et al.: Management of the diabetic atient in the diagnostic care pathway. In: Jarm, T., Cvetkoska, A., Mahnič-Kalamiza, S., Miklavcic, D. (eds.) EMBEC 2020. IFMBE Proceedings, vol. 80, pp. 784–792. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64610-3_88
Balato, G., et al.: Hip and knee section, prevention, surgical technique: proceedings of international consensus on orthopedic infections. J Arthroplasty. 34(2S), S301–S307 (2019)
Lamberti, A., Balato, G., Summa, P.P., Rajgopal, A., Vasdev, A., Baldini, A.: Surgical options for chronic patellar tendon rupture in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 26(5), 1429–1435 (2016). https://doi.org/10.1007/s00167-016-4370-0
Baldini, A., Balato, G., Franceschini, V.: The role of offset stems in revision knee arthroplasty. Curr. Rev. Musculoskelet. Med. 8(4), 383–389 (2015). https://doi.org/10.1007/s12178-015-9294-7
Improta, G., Mazzella, V., Vecchione, D., Santini, S., Triassi, M.: Fuzzy logic–based clinical decision support system for the evaluation of renal function in post-transplant patients. J. Eval. Clin. Pract. 26(4), 1224–1234 (2020)
Montella, E., Ferraro, A., Sperlì, G., Triassi, M., Santini, S., Improta, G.: Predictive analysis of healthcare-associated blood stream infections in the neonatal intensive care unit using artificial intelligence: a single center study. Int. J. Environ. Res. Public Health 19(5), 2498 (2022)
Fiorillo, A., Sorrentino, A., Scala, A., Abbate, V., Orabona, G.D.A.: Improving performance of the hospitalization process by applying the principles of lean thinking. TQM J. 33(7) (2021)
Cesarelli, G., Montella, E., Scala, A., Raiola, E., Triassi, M., Improta, G.: DMAIC approach for the reduction of healthcare-associated infections in the neonatal intensive care unit of the university hospital of Naples ‘federico II’. In: Jarm, T., Cvetkoska, A., Mahnič-Kalamiza, S., Miklavcic, D. (eds.) EMBEC 2020. IFMBE Proceedings, vol. 80, pp. 414–423. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64610-3_48
Latessa, I., et al.: Implementing fast track surgery in hip and knee arthroplasty using the lean Six Sigma methodology. TQM J. 33(7) (2021)
De Franco, C., et al.: The active knee extension after extensor mechanism reconstruction using allograft is not influenced by “early mobilization”: a systematic review and meta-analysis. J. Orthop. Surg. Res. 17(1), 153 (2022)
Khoshnood, B., Lee, K.S., Corpuz, M., Koetting, M., Hsieh, H.L., Kim, B.I.: Models for determining cost of care and length of stay in neonatal intensive care units. Int. J. Technol. Assess. Health Care 12(1), 62–71 (1996). https://doi.org/10.1017/s0266462300009399
Cesarelli, G., Scala, A., Vecchione, D., Ponsiglione, A.M., Guizzi, G.: An innovative business model for a multi-echelon supply chain inventory management pattern. In: Journal of Physics: Conference Series, vol. 1828, no. 1, p. 012082. IOP Publishing (2021)
Loperto, I., et al.: The impact of CoViD-19 on hospital activities: the case of the C.O.U. Otorhinolaryngology. In: 2021 10th International Conference on Bioinformatics and Biomedical Science (ICBBS 2021), pp. 157–161. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3498731.3498756
Guarino, F., Improta, G., Triassi, M., Castiglione, S., Cicatelli, A.: Air quality biomonitoring through Olea europaea L.: the study case of “Land of pyres”. Chemosphere 282, 131052 (2021). https://doi.org/10.1016/j.chemosphere.2021.131052
Guarino, F., Improta, G., Triassi, M., Cicatelli, A., Castiglione, S.: Effects of zinc pollution and compost amendment on the root microbiome of a metal tolerant poplar clone. Front. Microbiol. 11, 1677 (2020). https://doi.org/10.3389/fmicb.2020.01677
Guarino, F., et al.: Genetic characterization, micropropagation, and potential use for arsenic phytoremediation of Dittrichia viscosa (L.) Greuter. Ecotoxicol. Environ. Saf. 148, 675–683 (2018). https://doi.org/10.1016/j.ecoenv.2017.11.010
Guarino, F., Cicatelli, A., Brundu, G., Improta, G., Triassi, M., Castiglione, S.: The use of MSAP reveals epigenetic diversity of the invasive clonal populations of Arundo donax L. PLoS One 14 (2019). https://doi.org/10.1371/journal.pone.0215096
Smeraglia, F., Mariconda, M., Balato, G., Di Donato, S.L., Criscuolo, G., Maffulli, N.: Dubious space for Artelon joint resurfacing for basal thumb (trapeziometacarpal joint) osteoarthritis. A systematic review. Br. Med. Bull. 126(1), 79–84 (2018)
De Agostini, A., et al.: Heavy metal tolerance of orchid populations growing on abandoned mine tailings: a case study in Sardinia Island (Italy). Ecotoxicol. Environ. Saf. 189, 110018 (2020). https://doi.org/10.1016/j.ecoenv.2019.110018
Moccia, E., et al.: Use of Zea mays L. in phytoremediation of trichloroethylene. Environ. Sci. Pollut. Res. 24, 11053–11060 (2017). https://doi.org/10.1007/s11356-016-7570-8
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Santalucia, I. et al. (2023). Effects of Covid-19 Protocols on Treatment of Patients with Head-Neck Diseases. In: Wen, S., Yang, C. (eds) Biomedical and Computational Biology. BECB 2022. Lecture Notes in Computer Science(), vol 13637. Springer, Cham. https://doi.org/10.1007/978-3-031-25191-7_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-25191-7_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25190-0
Online ISBN: 978-3-031-25191-7
eBook Packages: Computer ScienceComputer Science (R0)