Skip to main content

Predictive Algorithms to Study the Hospitalization for Knee Replacement Surgery: A Bicentric Study

  • Conference paper
  • First Online:
Biomedical and Computational Biology (BECB 2022)

Abstract

Knee replacement surgery is one of the most interesting procedures in surgery. Patients generally have an LOS of about 5 days and when it increases it is related to clinical factors and the patient’s comorbidity. Duration of stay (LOS) is a useful tool for monitoring patients and useful for hospital administrators to assess the efficiency of the hospital. This study was conducted with the aim of analyzing LOS for all patients who underwent a procedure for the insertion or review of knee prostheses at the University Hospital “San Giovanni di Dio e Ruggi d’Aragona” in Salerno (Italy) and the A.O.R.N. “Antonio Cardarelli” in Naples (Italy). The goal of the work was to make a comparison between the two hospitals. The analysis was conducted with Multiple Linear Regression analysis and the implementation of Machine Learning algorithms: Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM) and Gradient Boosted Trees (GBT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carr, A.J., et al.: Knee replacement. Lancet 379(9823), 1331–1340 (2012). ISSN 0140-6736, https://doi.org/10.1016/S0140-6736(11)60752-6

  2. Price, A.J., et al.: Knee replacement. Lancet 392(10158), 1672–1682 (2018). ISSN 0140-6736, https://doi.org/10.1016/S0140-6736(18)32344-4

  3. Jones, C., Voaklander, D.C., Suarez-Almazor, M.E.: Determinanti della funzione dopo l’artroplastica totale del ginocchio. Phys. Ther. 83, 696–706 (2003)

    Google Scholar 

  4. Rosa, D., et al.: How to manage a failed cartilage repair: a systematic literature review. Joints 5(2), 93–106 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Judge, A., et al.: Predictors of outcomes of total knee replacement surgery. Rheumatology 51(10), 1804–1813 (2012). https://doi.org/10.1093/rheumatology/kes075

  6. Baldini, A., Balato, G., Franceschini, V.: The role of offset stems in revision knee arthroplasty. Curr. Rev. Musculoskelet. Med. 8(4), 383–389 (2015). https://doi.org/10.1007/s12178-015-9294-7

    Article  PubMed  PubMed Central  Google Scholar 

  7. Balato, G., et al.: Prevention and treatment of peri-prosthetic joint infection using surgical wound irrigation. J. Biol. Regul. Homeost. Agents 34(5 Suppl. 1), 17–23 (2020). IORS Special Issue on Orthopedics

    Google Scholar 

  8. Balato, G., et al.: Hip and knee section, prevention, surgical technique: proceedings of international consensus on orthopedic infections. J. Arthroplast. 34(2S), S301–S307 (2019)

    Google Scholar 

  9. Balato, G., Rizzo, M., Ascione, T., Smeraglia, F., Mariconda, M.: Re-infection rates and clinical outcomes following arthrodesis with intramedullary nail and external fixator for infected knee prosthesis: a systematic review and meta-analysis. BMC Musculoskelet. Disord. 19(1), 361 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Balato, G., et al.: Laboratory-based versus qualitative assessment of α-defensin in periprosthetic hip and knee infections: a systematic review and meta-analysis. Arch. Orthop. Trauma Surg. 140(3), 293–301 (2019). https://doi.org/10.1007/s00402-019-03232-5

    Article  PubMed  Google Scholar 

  11. Ascione, T., Balato, G., Mariconda, M., Rotondo, R., Baldini, A., Pagliano, P.: Continuous antibiotic therapy can reduce recurrence of prosthetic joint infection in patients undergoing 2-stage exchange. J. Arthroplast. 34(4), 704–709 (2019)

    Article  Google Scholar 

  12. Balato, G., et al.: Bacterial biofilm formation is variably inhibited by different formulations of antibiotic-loaded bone cement in vitro. Knee Surg. Sports Traumatol. Arthrosc. 27(6), 1943–1952 (2018). https://doi.org/10.1007/s00167-018-5230-x

    Article  PubMed  Google Scholar 

  13. Balato, G., et al.: Debridement and implant retention in acute hematogenous periprosthetic joint infection after knee arthroplasty: a systematic review. Orthop. Rev. (Pavia) 14(2), 33670 (2022)

    PubMed  PubMed Central  Google Scholar 

  14. Romano, V., et al.: Cell toxicity study of antiseptic solutions containing povidone-iodine and hydrogen peroxide. Diagnostics (Basel) 12(8), 2021 (2022)

    Article  CAS  PubMed  Google Scholar 

  15. RIAP - Progetto Registro Italiano ArtroProtesi 2017 “Potenziare la qualità dei dati per migliorare la sicurezza dei pazienti” (Roma: Il Pensiero Scientifico Editore).

    Google Scholar 

  16. Lamberti, A., Balato, G., Summa, P.P., Rajgopal, A., Vasdev, A., Baldini, A.: Surgical options for chronic patellar tendon rupture in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 26(5), 1429–1435 (2016). https://doi.org/10.1007/s00167-016-4370-0

    Article  PubMed  Google Scholar 

  17. Husted, H., Holm, G., Jacobsen, S.: Predictors of length of stay and patient satisfaction after hip and knee replacement surgery: Fast-track experience in 712 patients. Acta Orthop. 79(2), 168–173 (2008). https://doi.org/10.1080/17453670710014941

    Article  PubMed  Google Scholar 

  18. Ong, P.-H., Pua, Y.-H.: A prediction model for length of stay after total and unicompartmental knee replacement. Bone Joint J. 95-B(11), 1490–1496 (2013)

    Google Scholar 

  19. Smith, I.D.M., Elton, R., Ballantyne, J.A., Brenkel, I.J.: Pre-operative predictors of the length of hospital stay in total knee replacement. J. Bone Joint Surg. Br. 90-B(11), 1435–1440 (2008)

    Google Scholar 

  20. Trunfio, T.A., Borrelli, A., Improta, G.: Is it possible to predict the length of stay of patients undergoing hip-replacement surgery? Int. J. Environ. Res. Public Health 19(10), 6219 (2022)

    Google Scholar 

  21. Latessa, I., et al.: Implementing fast track surgery in hip and knee arthroplasty using the lean Six Sigma methodology. TQM J. 33(7) (2021)

    Google Scholar 

  22. Revetria, R., et al.: Improving healthcare using cognitive computing based software: an application in emergency situation. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds.) Advanced Research in Applied Artificial Intelligence. IEA/AIE 2012. LNCS, vol. 7345, pp. 477–490. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31087-4_50

  23. Ponsiglione, A.M., Cosentino, C., Cesarelli, G., Amato, F., Romano, M.: A comprehensive review of techniques for processing and analyzing fetal heart rate signals. Sensors 21, 6136 (2021). https://doi.org/10.3390/s21186136

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ponsiglione, A.M., Amato, F., Romano, M.: Multiparametric investigation of dynamics in fetal heart rate signals. Bioengineering 9, 8 (2022). https://doi.org/10.3390/bioengineering9010008

    Article  Google Scholar 

  25. Russo, T., et al.: Combination design of time-dependent magnetic field and magnetic nanocomposites to guide cell behavior. Nanomaterials 10(3), 577 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Santini, S., et al.: Using fuzzy logic for improving clinical daily-care of β-thalassemia patients. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6 (2017). https://doi.org/10.1109/FUZZ-IEEE.2017.8015545

  27. Improta, G., et al.: Fuzzy logic–based clinical decision support system for the evaluation of renal function in post-transplant patients. J. Eval. Clin. Pract. 26(4), 1224–1234 (2020)

    Google Scholar 

  28. Improta, G., Scala, A., Trunfio, T.A., Guizzi, G.: Application of supply chain management at drugs flow in an Italian hospital district. J. Phys. Conf. Ser. 1828(1). IOP Publishing (2021)

    Google Scholar 

  29. Cesarelli, G., Montella, E., Scala, A., Raiola, E., Triassi, M., Improta, G.: DMAIC approach for the reduction of healthcare-associated infections in the neonatal intensive care unit of the university hospital of Naples ‘Federico II’. In: Jarm, T., Cvetkoska, A., Mahnič-Kalamiza, S., Miklavcic, D. (eds.) 8th European Medical and Biological Engineering Conference. EMBEC 2020. IFMBE Proceedings, vol. 80. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64610-3_48

  30. Improta, G., Simone, T., Bracale, M.: HTA (Health Technology Assessment): a means to reach governance goals and to guide health politics on the topic of clinical Risk management. In: Proceedings of the 11th World Congress on Medical Physics and Biomedical Engineering (IUPESM 2009), Munich, Germany, 7–12 September 2009

    Google Scholar 

  31. Improta, G., et al.: Analytic hierarchy process (AHP) in dynamic configuration as a tool for health technology assessment (HTA): the case of biosensing optoelectronics in oncology. Int. J. Inf. Technol. Decis. Mak. 18(05), 1533–1550 (2019)

    Google Scholar 

  32. Improta, G., et al.: Evaluation of medical training courses satisfaction: qualitative analysis and analytic hierarchy process. In: Jarm, T., Cvetkoska, A., Mahnič-Kalamiza, S., Miklavcic, D. (eds.) 8th European Medical and Biological Engineering Conference. EMBEC 2020. IFMBE Proceedings, vol. 80, pp. 518–526. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64610-3_59

  33. Bacchi, S., Tan, Y., Oakden-Rayner, L., Jannes, J., Kleinig, T., Koblar, S.: Machine Learning in the Prediction of Medical Inpatient Length of Stay Intern. Med. J. (n/a)

    Google Scholar 

  34. Bender, G.J., et al.: Neonatal intensive care unit: predictive models for length of stay. J. Perinatol. Off. J. Calif. Perinat. Assoc. 33, 147–153 (2013)

    CAS  Google Scholar 

  35. Improta, G., Borrelli, A., Triassi, M.: Machine learning and lean six sigma to assess how COVID-19 has changed the patient management of the complex operative unit of neurology and stroke unit: a single center study. Int. J. Environ. Res. Public Health 19(9), 5215 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ponsiglione, A.M., Trunfio, T.A., Rossi, G., Borrelli, A., Romano, M.: Modelling the length of hospital stay after knee replacement surgery through machine learning and multiple linear regression at “San Giovanni di Dio e Ruggi d’Aragona” university hospital. In: 2021 10th International Conference on Bioinformatics and Biomedical Science (ICBBS 2021), pp. 112–116. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3498731.3498748

  37. Trunfio, T.A., et al.: Multiple regression model to analyze the total LOS for patients undergoing laparoscopic appendectomy. BMC Med. Inform. Decis. Mak. 22(1), 1–8 (2022)

    Google Scholar 

  38. Mariconda, M., Soscia, E., Sirignano, C., Smeraglia, F., Soldati, A., Balato, G.: Long-term clinical results and MRI changes after tendon ball arthroplasty for advanced Kienbock’s disease. J. Hand Surg. Eur. 38(5), 508–514 (2013)

    Article  CAS  Google Scholar 

  39. Han, Q., Molinaro, C., Picariello, A., Sperli, G., Subrahmanian, V.S., Xiong, Y.: Generating fake documents using probabilistic logic graphs. IEEE Trans. Dependable Secure Comput. (2021). https://doi.org/10.1109/TDSC.2021.3058994

  40. La Gatta, V., Moscato, V., Pennone, M., Postiglione, M., and Sperlí, G.: Music recommendation via hypergraph embedding. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3146968

  41. Esposito, C., Moscato, V., Sperlí, G.: Trustworthiness assessment of users in social reviewing systems. IEEE Trans. Syst. Man Cybern. Syst. 52(1), 151–165 (2022). https://doi.org/10.1109/TSMC.2020.3049082

    Article  Google Scholar 

  42. Sperlí, G.: A cultural heritage framework using a deep learning based chatbot for supporting tourist journey. Expert Syst. Appl. 183, 115277 (2021). https://doi.org/10.1016/j.eswa.2021.115277

    Article  Google Scholar 

  43. Sperlí, G.: A deep learning based chatbot for cultural heritage. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 935–937, March 2020. https://doi.org/10.1145/3341105.3374129

  44. Ianni, M., Masciari, E., Sperlí, G.: A survey of big data dimensions vs social networks analysis. J. Intell. Inf. Syst. 57(1), 73–100 (2020). https://doi.org/10.1007/s10844-020-00629-2

    Article  PubMed  PubMed Central  Google Scholar 

  45. Smeraglia, F., Del Buono, A., Maffulli, N.: Endoscopic cubital tunnel release: a systematic review. Br. Med. Bull. 116, 155–163 (2015)

    PubMed  Google Scholar 

  46. Smeraglia, F., Basso, M.A., Famiglietti, G., Eckersley, R., Bernasconi, A., Balato, G.: Partial wrist denervation versus total wrist denervation: a systematic review of the literature. Hand Surg. Rehabil. 39(6), 487–491 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Rosaria Marino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ponsiglione, A.M. et al. (2023). Predictive Algorithms to Study the Hospitalization for Knee Replacement Surgery: A Bicentric Study. In: Wen, S., Yang, C. (eds) Biomedical and Computational Biology. BECB 2022. Lecture Notes in Computer Science(), vol 13637. Springer, Cham. https://doi.org/10.1007/978-3-031-25191-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25191-7_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25190-0

  • Online ISBN: 978-3-031-25191-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics