Skip to main content

SSCG: Spatial Subcluster Clustering Method by Grid-Connection

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2022)

Abstract

Existing clustering methods rely on prior knowledge of the data set to cluster it, so the quality of the clustering effect is entirely dependent on the user’s familiarity with the data set. Furthermore, when extracting the information from a data set, existing clustering algorithms frequently ignore the geometric distribution of data, making it difficult to identify data objects in their entirety and detect local spatial structures. To address these issues, this paper proposes a spatial subcluster clustering method by grid-connection, which automatically obtains subclusters by iterative local labeling without requiring a priori knowledge of the data set and efficiently extracts correlations between data by establishing relationships between subclusters by grid-connecting. Experiments are conducted to validate the proposed algorithm against existing state-of-the-art algorithms on 9 synthetic and 4 real data sets. The results show SSCG can efficiently utilize the information on the grid space without relying on a priori knowledge, and the overall performance is better than the existing advanced algorithms.

Y. Zhang and X. Han—Equally contributed to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD international conference on Management of data, pp. 94–105 (1998)

    Google Scholar 

  2. Bacciu, D., Barsocchi, P., Chessa, S., Gallicchio, C., Micheli, A.: An experimental characterization of reservoir computing in ambient assisted living applications. Neural Comput. Appl. 24(6), 1451–1464 (2014)

    Article  Google Scholar 

  3. Bai, L., Liang, J., Cao, F.: A multiple k-means clustering ensemble algorithm to find nonlinearly separable clusters. Inform. Fusion 61, 36–47 (2020)

    Article  Google Scholar 

  4. Brown, D., Japa, A., Shi, Y.: A fast density-grid based clustering method. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0048–0054. IEEE (2019)

    Google Scholar 

  5. Du, G., Zhou, L., Yang, Y., Lü, K., Wang, L.: Deep multiple auto-encoder-based multi-view clustering. Data Sci. Eng. 6(3), 323–338 (2021)

    Article  Google Scholar 

  6. Ghahramani, Z.: Unsupervised learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 72–112. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_5

    Chapter  MATH  Google Scholar 

  7. Gui, Z., Peng, D., Wu, H., Long, X.: Msgc: multi-scale grid clustering by fusing analytical granularity and visual cognition for detecting hierarchical spatial patterns. Future Gener. Comput. Syst. 112, 1038–1056 (2020)

    Article  Google Scholar 

  8. Li, H., Liu, X., Li, T., Gan, R.: A novel density-based clustering algorithm using nearest neighbor graph. Patt. Recogn. 102, 107206 (2020)

    Article  Google Scholar 

  9. Ma, E.W., Chow, T.W.: A new shifting grid clustering algorithm. Patt. Recogn. 37(3), 503–514 (2004)

    Article  MATH  Google Scholar 

  10. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. vol. 1, pp. 281–297. Oakland, CA, USA (1967)

    Google Scholar 

  11. Mautz, D., Plant, C., Böhm, C.: Deepect: the deep embedded cluster tree. Data Sci. Eng. 5(4), 419–432 (2020)

    Article  Google Scholar 

  12. Powers, D.M.: Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061 (2020)

  13. Sarfraz, S., Sharma, V., Stiefelhagen, R.: Efficient parameter-free clustering using first neighbor relations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2019)

    Google Scholar 

  14. Sarle, W.S.: Algorithms for clustering data (1990)

    Google Scholar 

  15. Tao, Z., Liu, H., Li, S., Fu, Y.: Robust spectral ensemble clustering. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 367–376 (2016)

    Google Scholar 

  16. Tu, L., Chen, Y.: Stream data clustering based on grid density and attraction. ACM Trans. Knowl. Disc. Data (TKDD) 3(3), 1–27 (2009)

    Article  Google Scholar 

  17. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Wu, B., Wilamowski, B.M.: A fast density and grid based clustering method for data with arbitrary shapes and noise. IEEE Trans. Indust. Inform. 13(4), 1620–1628 (2016)

    Article  Google Scholar 

  19. Yue, L., Zuo, W., Peng, T., Wang, Y., Han, X.: A fuzzy document clustering approach based on domain-specified ontology. Data Knowl. Eng. 100, 148–166 (2015)

    Article  Google Scholar 

  20. Zarikas, V., Poulopoulos, S.G., Gareiou, Z., Zervas, E.: Clustering analysis of countries using the covid-19 cases dataset. Data Brief 31, 105787 (2020)

    Article  Google Scholar 

  21. Zhu, Q., Pei, J., Liu, X., Zhou, Z.: Analyzing commercial aircraft fuel consumption during descent: a case study using an improved k-means clustering algorithm. J. Cleaner Prod. 223, 869–882 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Han, X., Wang, L., Chen, W., Guo, L. (2023). SSCG: Spatial Subcluster Clustering Method by Grid-Connection. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13422. Springer, Cham. https://doi.org/10.1007/978-3-031-25198-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25198-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25197-9

  • Online ISBN: 978-3-031-25198-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics