Skip to main content

DASH: Data Aware Locality Sensitive Hashing

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13422))

  • 719 Accesses

Abstract

Locality sensitive hashing (LSH) has been extensively employed to solve the problem of c-approximate nearest neighbor search (c-ANNS) in high-dimensional spaces. However, the search performance of LSH is degenerated with the number of data increasing. To this end, we propose an efficient method called Data Aware Sensitive Hashing (DASH) to deal with this drawback. DASH is the data-dependent hashing algorithm under considering the residual distance prior. DASH leverages this prior knowledge and provides theoretical guarantee for search results. Our experimental results with various datasets show that DASH achieves better search performance and the running time can reach up to about 4–40x speedups compared with other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of ACM STOC, pp. 604–613 (1998)

    Google Scholar 

  2. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of SoCG, pp. 253–262 (2004)

    Google Scholar 

  3. Ren, Z., Gu, Yu., Li, C., Li, F.F., Yu, G.: GPU-based dynamic hyperspace hash with full concurrency. Data Sci. Eng. 6(3), 265–279 (2021). https://doi.org/10.1007/s41019-021-00161-5

    Article  Google Scholar 

  4. Gan, J., Feng, J., Fang, Q., Ng, W.: Locality-sensitive hashing scheme based on dynamic collision counting. In: Proceedings of SIGMOD, pp. 541–552 (2012)

    Google Scholar 

  5. Huang, Q., Feng, J., Zhang, Y., et al.: Query-aware locality-sensitive hashing for approximate nearest neighbor search. In: Proceedings of VLDB, pp. 1–12 (2015)

    Google Scholar 

  6. Lu, K., Wang, H., Wang, W., Kudo, M.: VHP: approximate nearest neighbor search via virtual hypersphere partitioning. In: Proceedings of VLDB, pp. 1443–1455 (2020)

    Google Scholar 

  7. Andoni, A., Razenshteyn, I.: Optimal data-dependent hashing for approximate near neighbors. In: Proceedings of STOC, pp. 793–801 (2015)

    Google Scholar 

  8. Andoni, A., Naor, A., Nikolov, A., et al.: Data-dependent hashing via nonlinear spectral gaps. In: Proceedings of ACM SOTC, pp. 787–800 (2018)

    Google Scholar 

  9. Gao, J., Jagadish, H.V., et al.: DSH: data sensitive hashing for high-dimensional k-nnsearch. In: Proceedings of SIGMOD, pp. 1127–1138 (2014)

    Google Scholar 

  10. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2010)

    Article  Google Scholar 

  11. Dong, W., Wang, Z., Josephson, W., et al.: Modeling lsh for performance tuning. In: Proceedings of CIMK, pp. 669–678 (2008)

    Google Scholar 

  12. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proceedings of SIGMOD, pp. 47–57 (1984)

    Google Scholar 

  13. Bustos, B. Pedreira, O. Brisaboa, N.: A dynamic pivot selection technique for similarity search. In: Proceedings of SISAP, pp. 394–401 (2008)

    Google Scholar 

  14. Ge, T., He, K., Ke, Q., Sun, J.: Optimized product quantization for approximate nearest neighbor search. In: Proceedings of CVPR, pp. 2946–2953 (2013)

    Google Scholar 

  15. Babenko, A., Lempitsky, V.: Tree quantization for large-scale similarity search and classification. In: Proceedings of CVPR, pp. 4240–4248 (2015)

    Google Scholar 

  16. Yi, P., Li, J., Choi, B., Bhowmick, S.S., Xu, J.: FLAG: towards graph query autocompletion for large graphs. Data Sci. Eng. 7(2), 175–191 (2022)

    Article  Google Scholar 

  17. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell. (2018)

    Google Scholar 

  18. Zheng, B., Xi, Z., Weng, L. et al.: PM-LSH: A fast and accurate LSH framework for high-dimensional approximate NN search. In: Proceedings of VLDB, pp. 643–655 (2020)

    Google Scholar 

  19. Lu, K. and Kudo, M.: R2LSH: A nearest neighbor search scheme based on two-dimensional projected spaces. In: Proceedings of ICDE, pp. 1045–1056 (2020)

    Google Scholar 

  20. Sun, Y., Wang, W., Qin, J., et al.: SRS: solving c-approximate nearest neighbor queries in high dimensional euclidean space with a tiny index. In: Proceedings of VLDB, pp. 1–12 (2014)

    Google Scholar 

  21. Arora, A., Sinha, S., Kumar, P., Bhattacharya, A.: Hd-index: Pushing the scalability-accuracy boundary for approximate knn search in highdimensional spaces. In: Proceedings of VLDB, pp. 906–919 (2018)

    Google Scholar 

  22. Liu, Y, Cheng, H, Cui, J.: PQBF: I/O-efficient approximate nearest neighbor search by product quantization. In: CIKM, pp. 667–676 (2017)

    Google Scholar 

  23. Satuluri, V., Parthasarathy, S.: Bayesian locality sensitive hashing for fast similarity search. In: Proceedings of VLDB, pp. 430–441 (2012)

    Google Scholar 

Download references

Acknowledgements

The work reported in this paper is partially supported by NSF of Shanghai under grant number 22ZR1402000, the Fundamental Research Funds for the Central Universities under grant number 2232021A-08, State Key Laboratory of Computer Architecture (ICT,CAS) under Grant No. CARCHB 202118, Information Development Project of Shanghai Economic and Information Commission (202002009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongya Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, Z., Wang, H., Du, M., Zhang, J. (2023). DASH: Data Aware Locality Sensitive Hashing. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13422. Springer, Cham. https://doi.org/10.1007/978-3-031-25198-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25198-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25197-9

  • Online ISBN: 978-3-031-25198-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics