Skip to main content

User Multi-behavior Enhanced POI Recommendation with Efficient and Informative Negative Sampling

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2022)

Abstract

Point-of-Interest (POI) recommendation plays a crucial role in the location-based social networks (LBSNs), while the extreme sparsity of user check-in data severely impedes the further improvement of POI recommendation. Existing works jointly analyse user check-in behaviors (i.e., positive samples) and POI distribution to tackle this issue. However, introducing user multi-modal behaviors (e.g., online map query behaviors), as a supplement of user preference, still has not been explored. Further, they also neglect to exploit why users don’t visit the POIs (i.e., negative samples). To these ends, in this paper, we propose a novel approach, user multi-behavior enhanced POI recommendation with efficient and informative negative sampling, to promote recommendation performance. In particular, we first extract three types of relationships, i.e., POI-query, user-query and POI-POI, from map query and check-in data. After that, a novel approach is proposed to learn user and POI representations in each behavior through these heterogeneous relationships. Moreover, we design a negative sampling method based on geographic information to generate efficient and informative negative samples. Extensive experiments conducted on real-world datasets demonstrate the superiority of our approach compared to state-of-the-art recommenders in terms of different metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hang, M., Pytlarz, I., Neville, J.: Exploring student check-in behavior for improved point-of-interest prediction. In: SIGKDD, pp. 321–330 (2018)

    Google Scholar 

  2. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: ICDM, pp. 263–272 (2008)

    Google Scholar 

  3. Huang, T., et al.: MixGCF: an improved training method for graph neural network-based recommender systems. In: SIGKDD, pp. 665–674 (2021)

    Google Scholar 

  4. Jiao, X., Xiao, Y., Zheng, W., et al.: R2SIGTP: a novel real-time recommendation system with integration of geography and temporal preference for next point-of-interest. In: WWW, pp. 3560–3563 (2019)

    Google Scholar 

  5. Li, X., et al.: Rank-GeoFM: a ranking based geographical factorization method for point of interest recommendation. In: SIGIR, pp. 433–442 (2015)

    Google Scholar 

  6. Lian, D., Zhao, C., et al.: GeoMF: joint geographical modeling and matrix factorization for point-of-interest recommendation. In: SIGKDD, pp. 831–840 (2014)

    Google Scholar 

  7. Liu, Y., Liu, C., Lu, X., et al.: Point-of-interest demand modeling with human mobility patterns. In: SIGKDD, pp. 947–955 (2017)

    Google Scholar 

  8. Ma, C., et al.: Point-of-interest recommendation: exploiting self-attentive autoencoders with neighbor-aware influence. In: CIKM, pp. 697–706 (2018)

    Google Scholar 

  9. Mao, K., Zhu, J., Xiao, X., et al.: UltraGCN: ultra simplification of graph convolutional networks for recommendation. In: CIKM, pp. 1253–1262 (2021)

    Google Scholar 

  10. Mikolov, T., et al.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  11. Qian, T., Liu, B., Nguyen, Q.V.H., et al.: Spatiotemporal representation learning for translation-based poi recommendation. TOIS 37(2), 1–24 (2019)

    Article  Google Scholar 

  12. Rendle, S., Freudenthaler, C., Gantner, Z., et al.: BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

  13. Tang, J., Wang, K.: Personalized top-n sequential recommendation via convolutional sequence embedding. In: WSDM, pp. 565–573 (2018)

    Google Scholar 

  14. Wang, D., Wang, X., Xiang, Z., Yu, D., Deng, S., Xu, G.: Attentive sequential model based on graph neural network for next POI recommendation. World Wide Web 24(6), 2161–2184 (2021). https://doi.org/10.1007/s11280-021-00961-9

    Article  Google Scholar 

  15. Wang, X., He, X., Wang, M., Feng, F., et al.: Neural graph collaborative filtering. In: SIGIR, pp. 165–174 (2019)

    Google Scholar 

  16. Wang, X., Jin, H., Zhang, A., et al.: Disentangled graph collaborative filtering. In: SIGIR, pp. 1001–1010 (2020)

    Google Scholar 

  17. Wang, Y., Yuan, N.J., Lian, D., et al.: Regularity and conformity: location prediction using heterogeneous mobility data. In: SIGKDD, pp. 1275–1284 (2015)

    Google Scholar 

  18. Wu, Z., Wu, H., Zhang, T.: Predict user in-world activity via integration of map query and mobility trace. In: UrbComp 2015 (1991)

    Google Scholar 

  19. Xie, M., Yin, H., Wang, H., et al.: Learning graph-based poi embedding for location-based recommendation. In: CIKM, pp. 15–24 (2016)

    Google Scholar 

  20. Yang, C., et al.: Bridging collaborative filtering and semi-supervised learning: a neural approach for POI recommendation. In: SIGKDD, pp. 1245–1254 (2017)

    Google Scholar 

  21. Ye, M., Yin, P., Lee, W.C., et al.: Exploiting geographical influence for collaborative point-of-interest recommendation. In: SIGIR, pp. 325–334 (2011)

    Google Scholar 

  22. Ying, H., Chen, L., Xiong, Y., et al.: PGRank: personalized geographical ranking for point-of-interest recommendation. In: WWW, pp. 137–138 (2016)

    Google Scholar 

  23. Yuan, Q., Cong, G., Ma, Z., et al.: Time-aware point-of-interest recommendation. In: SIGIR, pp. 363–372 (2013)

    Google Scholar 

  24. Yuan, Z., Liu, H., Liu, J., et al.: Incremental spatio-temporal graph learning for online query-poi matching. In: WWW, pp. 1586–1597 (2021)

    Google Scholar 

  25. Zhang, S., Cheng, H.: Exploiting context graph attention for poi recommendation in location-based social networks. In: DASFAA, pp. 83–99 (2018)

    Google Scholar 

  26. Zhao, P., Xu, X., Liu, Y., et al.: Exploiting hierarchical structures for poi recommendation. In: ICDM, pp. 655–664. IEEE (2017)

    Google Scholar 

  27. Zhao, S., Zhao, T., King, I., et al.: Geo-teaser: geo-temporal sequential embedding rank for point-of-interest recommendation. In: WWW, pp. 153–162 (2017)

    Google Scholar 

  28. Zhao, S., Zhao, T., Yang, H., et al.: STELLAR: spatial-temporal latent ranking for successive point-of-interest recommendation. In: AAAI (2016)

    Google Scholar 

  29. Zhou, J., Pei, H., Wu, H.: Early warning of human crowds based on query data from Baidu maps: analysis based on Shanghai stampede. In: Big Data Support of Urban Planning and Management. AGIS, pp. 19–41. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-51929-6_2

    Chapter  Google Scholar 

  30. Zhu, H., Li, W., Liu, W., Yin, J., Xu, J.: Top k optimal sequenced route query with poi preferences. Data Sci. Eng. 7(1), 3–15 (2022)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported in part by the National Natural Science Foundation of China under Grant (No. 62072235, No. 62106218).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingjing Gu or Haochao Ying .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Gu, J., Ying, H., Lu, X., Yang, J. (2023). User Multi-behavior Enhanced POI Recommendation with Efficient and Informative Negative Sampling. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13423. Springer, Cham. https://doi.org/10.1007/978-3-031-25201-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25201-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25200-6

  • Online ISBN: 978-3-031-25201-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics