Skip to main content

Graph-Based Sequential Interpolation Recommender for Cold-Start Users

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2022)

Abstract

Sequential recommendation systems aim to capture the users’ dynamic preferences from users’ historical interactions to provide more accurate recommendations. However, in many scenarios, there are a large number of cold-start users with limited user-item interactions. To address this challenge, some studies utilize auxiliary information to infer users’ interests. But with the increasing awareness of personal privacy protection, it is difficult to obtain detailed descriptions of users. Therefore, we propose a model called GitRec (Graph-based sequential interpolation Recommender for cold-start users) to address this issue. Our proposed model GitRec captures users’ latent preferences and provides more proper recommendations for cold-start users without any help from external information. Specifically, (i) GitRec constructs the global graph based on all sequences to obtain the core interests of the warm-start users. (ii) Then, GitRec selects content-rich sequences that are most similar to the short sequences and constructs the local graph to find out the potential preferences of cold-start users. (iii) Finally, GitRec can find suitable candidates to enrich the information of the cold-start users by using graph neural networks, and provide better recommendations with the help of core interests and potential preferences. We conducted extensive experiments on three real-world datasets. The experimental results demonstrate that GitRec has significant improvement over state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://files.grouplens.org/datasets/movielens/.

  2. 2.

    http://jmcauley.ucsd.edu/data/amazon/.

  3. 3.

    https://tianchi.aliyun.com/dataset/dataDetail?dataId=42.

References

  1. Chen, J., et al.: Co-purchaser recommendation for online group buying. Data Sci. Eng. 5(3), 280–292 (2020)

    Article  Google Scholar 

  2. Christakopoulou, K., Radlinski, F., Hofmann, K.: Towards conversational recommender systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 815–824 (2016)

    Google Scholar 

  3. Cui, Z., et al.: Reinforced KGS reasoning for explainable sequential recommendation. World Wide Web 25(2), 631–654 (2022)

    Google Scholar 

  4. Fernández-Tobías, I., Braunhofer, M., Elahi, M., Ricci, F., Cantador, I.: Alleviating the new user problem in collaborative filtering by exploiting personality information. User Model. User-Adapt. Interact. 26(2), 221–255 (2016)

    Google Scholar 

  5. He, R., McAuley, J.: Fusing similarity models with Markov chains for sparse sequential recommendation. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 191–200. IEEE (2016)

    Google Scholar 

  6. Herce-Zelaya, J., Porcel, C., Bernabé-Moreno, J.: New technique to alleviate the cold start problem in recommender systems using information from social media and random decision forests. Inf. Sci. 536, 156–170 (2020)

    Article  MathSciNet  Google Scholar 

  7. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. Computer Science (2015)

    Google Scholar 

  8. Huang, Y., Zhao, F., Gui, X., Jin, H.: Path-enhanced explainable recommendation with knowledge graphs. World Wide Web 24(5), 1769–1789 (2021). https://doi.org/10.1007/s11280-021-00912-4

    Article  Google Scholar 

  9. Kang, W.C., McAuley, J.: Self-attentive sequential recommendation. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 197–206. IEEE (2018)

    Google Scholar 

  10. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  11. Lee, H., Im, J., Jang, S., Cho, H., Chung, S.: MELU: meta-learned user preference estimator for cold-start recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1073–1082 (2019)

    Google Scholar 

  12. Lei, W., et al.: Interactive path reasoning on graph for conversational recommendation. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2073–2083 (2020)

    Google Scholar 

  13. Li, B.H., Liu, Y., Zhang, A.M., Wang, W.H., Wan, S.: A survey on blocking technology of entity resolution. J. Comput. Sci. Technol. 35(4), 769–793 (2020)

    Article  Google Scholar 

  14. Li, C., Wang, F., Yang, Y., Li, Z., Zhang, X.: Exploring social network information for solving cold start in product recommendation. In: Wang, J., et al. (eds.) WISE 2015. LNCS, vol. 9419, pp. 276–283. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26187-4_24

    Chapter  Google Scholar 

  15. Li, J., Wang, Y., McAuley, J.: Time interval aware self-attention for sequential recommendation. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 322–330 (2020)

    Google Scholar 

  16. Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., Ma, J.: Neural attentive session-based recommendation. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1419–1428 (2017)

    Google Scholar 

  17. Li, J., Jing, M., Lu, K., Zhu, L., Yang, Y., Huang, Z.: From zero-shot learning to cold-start recommendation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4189–4196 (2019)

    Google Scholar 

  18. Liu, Q., Zeng, Y., Mokhosi, R., Zhang, H.: Stamp: short-term attention/memory priority model for session-based recommendation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1831–1839 (2018)

    Google Scholar 

  19. Liu, Y., Li, B., Zang, Y., Li, A., Yin, H.: A knowledge-aware recommender with attention-enhanced dynamic convolutional network. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, pp. 1079–1088 (2021)

    Google Scholar 

  20. Qian, X., Li, M.: E-commerce user type recognition based on access sequence similarity. J. Organ. Comput. Electron. Commer. 30(3), 209–223 (2020)

    Article  Google Scholar 

  21. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized Markov chains for next-basket recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp. 811–820 (2010)

    Google Scholar 

  22. Tang, J., Wang, K.: Personalized top-n sequential recommendation via convolutional sequence embedding. In: Proceedings of the eleventh ACM International Conference on Web Search and Data Mining, pp. 565–573 (2018)

    Google Scholar 

  23. Tuan, T.X., Phuong, T.M.: 3d convolutional networks for session-based recommendation with content features. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 138–146 (2017)

    Google Scholar 

  24. Wang, J., Ding, K., Caverlee, J.: Sequential recommendation for cold-start users with meta transitional learning. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1783–1787 (2021)

    Google Scholar 

  25. Wang, X., Wang, D., Xu, C., He, X., Cao, Y., Chua, T.S.: Explainable reasoning over knowledge graphs for recommendation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5329–5336 (2019)

    Google Scholar 

  26. Wang, Z., Wei, W., Cong, G., Li, X.L., Mao, X.L., Qiu, M.: Global context enhanced graph neural networks for session-based recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 169–178 (2020)

    Google Scholar 

  27. Wu, S., Zhang, Y., Gao, C., Bian, K., Cui, B.: Garg: anonymous recommendation of point-of-interest in mobile networks by graph convolution network. Data Sci. Eng. 5(2), 433–447 (2020)

    Article  Google Scholar 

  28. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommendation with graph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 346–353 (2019)

    Google Scholar 

  29. Zang, Y., et al.: GISDCN: a graph-based interpolation sequential recommender with deformable convolutional network. In: Zang, Y., et al. (eds.) Database Systems for Advanced Applications. DASFAA 2022. LNCS, vol. 13246, pp. 289–297. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-00126-0_21

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Jiangsu Province (No. BK20210280), the Fundamental Research Funds for the Central Universities (NO. NS2022089), the Jiangsu Provincial Innovation and Entrepreneurship Doctor Program under Grants No. JSSCBS20210185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, A. et al. (2023). Graph-Based Sequential Interpolation Recommender for Cold-Start Users. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13423. Springer, Cham. https://doi.org/10.1007/978-3-031-25201-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25201-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25200-6

  • Online ISBN: 978-3-031-25201-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics