Skip to main content

A2TN: Aesthetic-Based Adversarial Transfer Network for Cross-Domain Recommendation

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2022)

Abstract

To address the long-standing data sparsity problem in recommender systems, Cross-Domain Recommendation (CDR) has been proposed to leverage the relatively richer information from a richer domain to improve the recommendation performance in a sparser domain. Therefore, enhancing the transferability of features in different domains is crucial for improving the recommendation performance. However, existing methods are usually confronted with negative transfer due to the data sparsity problem. To this end, we propose an Aesthetic-based Adversarial Transfer Network (A2TN) for CDR, which takes advantage of the transferability of aesthetic preferences to ensure the effect of feature transfer. Specifically, we first utilize an aesthetic network to extract aesthetic features and a general feature layer to embed general features, which can collaboratively capture user’s comprehensive preferences. Then, we adopt the adversarial transfer network to generate domain-dependent features for avoiding negative transfer and domain-independent features for effective knowledge transfer. Moreover, an attention mechanism is used to fuse different preferences with different weights to reflect their importance in better portraying user’s preferences. Finally, the experimental results on real-world datasets demonstrate that our proposed model outperforms the benchmark recommendation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://jmcauley.ucsd.edu/data/amazon/links.html.

References

  1. Berkovsky, S., Kuflik, T., Ricci, F.: Cross-domain mediation in collaborative filtering. In: User Modeling, pp. 355–359 (2007)

    Google Scholar 

  2. Chen, X., et al.: S\({}^{\text{2 }}\)r-tree: a pivot-based indexing structure for semantic-aware spatial keyword search. GeoInformatica 24(1), 3–25 (2020)

    Article  MathSciNet  Google Scholar 

  3. Fernández-Tobías, I., Cantador, I.: Exploiting social tags in matrix factorization models for cross-domain collaborative filtering. In: CBRecSys@RecSys, pp. 34–41 (2014)

    Google Scholar 

  4. Ganin, Y., Lempitsky, V.S.: Unsupervised domain adaptation by backpropagation. In: ICML, pp. 1180–1189 (2015)

    Google Scholar 

  5. He, R., McAuley, J.J.: VBPR: visual Bayesian personalized ranking from implicit feedback. In: AAAI, pp. 144–150 (2016)

    Google Scholar 

  6. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering. In: WWW, pp. 173–182 (2017)

    Google Scholar 

  7. Hu, G., Zhang, Y., Yang, Q.: Conet: collaborative cross networks for cross-domain recommendation. In: CIKM, pp. 667–676 (2018)

    Google Scholar 

  8. Jin, X., et al.: ILGNet: inception modules with connected local and global features for efficient image aesthetic quality classification using domain adaptation. IET Comput. Vis. 13, 206–212 (2019)

    Article  Google Scholar 

  9. Li, Y., Xu, J., Zhao, P., Fang, J., Chen, W., Zhao, L.: ATLRec: an attentional adversarial transfer learning network for cross-domain recommendation. J. Comput. Sci. Technol. 35, 794–808 (2020)

    Article  Google Scholar 

  10. Liu, H., Xu, J., Zheng, K., Liu, C., Du, L., Wu, X.: Semantic-aware query processing for activity trajectories. In: WSDM, pp. 283–292. ACM (2017)

    Google Scholar 

  11. Liu, J., et al.: Exploiting aesthetic preference in deep cross networks for cross-domain recommendation. In: WWW, pp. 2768–2774 (2020)

    Google Scholar 

  12. Liu, Y., Li, B., Zang, Y., Li, A., Yin, H.: A knowledge-aware recommender with attention-enhanced dynamic convolutional network. In: CIKM, pp. 1079–1088. ACM (2021)

    Google Scholar 

  13. Loni, B., Shi, Y., Larson, M.A., Hanjalic, A.: Cross-domain collaborative filtering with factorization machines. In: ECIR, pp. 656–661 (2014)

    Google Scholar 

  14. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning. In: CVPR, pp. 3994–4003 (2016)

    Google Scholar 

  15. Pan, R., et al.: One-class collaborative filtering. In: ICDM, pp. 502–511 (2008)

    Google Scholar 

  16. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: UAI, pp. 452–461 (2009)

    Google Scholar 

  17. Singh, A.P., Gordon, G.J.: Relational learning via collective matrix factorization. In: KDD, pp. 650–658 (2008)

    Google Scholar 

  18. Sun, H., Xu, J., Zheng, K., Zhao, P., Chao, P., Zhou, X.: MFNP: a meta-optimized model for few-shot next POI recommendation. In: IJCAI, pp. 3017–3023. ijcai.org (2021)

    Google Scholar 

  19. Tan, S., Bu, J., Qin, X., Chen, C., Cai, D.: Cross domain recommendation based on multi-type media fusion. Neurocomputing 127, 124–134 (2014)

    Article  Google Scholar 

  20. Wu, S., Zhang, Y., Gao, C., Bian, K., Cui, B.: GARG: anonymous recommendation of point-of-interest in mobile networks by graph convolution network. Data Sci. Eng. 5(4), 433–447 (2020)

    Article  Google Scholar 

  21. Yu, W., Zhang, H., He, X., Chen, X., Xiong, L., Qin, Z.: Aesthetic-based clothing recommendation. In: WWW, pp. 649–658 (2018)

    Google Scholar 

  22. Yuan, F., Yao, L., Benatallah, B.: Darec: deep domain adaptation for cross-domain recommendation via transferring rating patterns. In: IJCAI, pp. 4227–4233 (2019)

    Google Scholar 

  23. Zhou, A., Wang, Y., Chen, L.: Finding large diverse communities on networks: the edge maximum k*-partite clique. Proc. VLDB Endow. 13(11), 2576–2589 (2020)

    Article  Google Scholar 

  24. Zhou, A., Wang, Y., Chen, L.: Butterfly counting on uncertain bipartite networks. Proc. VLDB Endow. 15(2), 211–223 (2021)

    Article  Google Scholar 

  25. Zhu, F., Chen, C., Wang, Y., Liu, G., Zheng, X.: DTCDR: a framework for dual-target cross-domain recommendation. In: CIKM, pp. 1533–1542 (2019)

    Google Scholar 

  26. Zhu, F., Wang, Y., Chen, C., Liu, G., Orgun, M.A., Wu, J.: A deep framework for cross-domain and cross-system recommendations. In: IJCAI, pp. 3711–3717 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghua Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Sang, Y. (2023). A2TN: Aesthetic-Based Adversarial Transfer Network for Cross-Domain Recommendation. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13423. Springer, Cham. https://doi.org/10.1007/978-3-031-25201-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25201-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25200-6

  • Online ISBN: 978-3-031-25201-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics