Skip to main content

MORO: A Multi-behavior Graph Contrast Network for Recommendation

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2022)

Abstract

Multi-behavior recommendation models exploit diverse behaviors of users (e.g., page view, add-to-cart, and purchase) and successfully alleviate the data sparsity and cold-start problems faced by classical recommendation methods. In real-world scenarios, the interactive behaviors between users and items are often complex and highly dependent. Existing multi-behavior recommendation models do not fully utilize multi-behavior information in the following two aspects: (1) The diversity of user behavior resulting from the individualization of users’ intents. (2) The loss of user multi-behavior information due to inappropriate information fusion. To fill this gap, we hereby propose a multi-behavior graph contrast network (MORO). Firstly, MORO constructs multiple behavior representations of users from different behavior graphs and aggregate these representations based on behavior intents of each user. Secondly, MORO develops a contrast enhancement module to capture information of high-order heterogeneous paths and reduce information loss. Extensive experiments on three real-world datasets show that MORO outperforms state-of-the-art baselines. Furthermore, the preference analysis implies that MORO can accurately model user multi-behavior preferences.

This work was supported by the National Natural Science Foundation of China (61972268), the National Key Research and Development Program of China (2018YFB0704301-1), Med-X Center for Informatics Funding Project (YGJC001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://tianchi.aliyun.com/dataset/dataDetail?dataId=649.

  2. 2.

    https://www.beibei.com/.

  3. 3.

    https://www.yelp.com/dataset/download.

  4. 4.

    https://github.com/1310374310/MORO.

References

  1. Chen, C., et al.: Graph heterogeneous multi-relational recommendation. In: AAAI, pp. 3958–3966 (2021)

    Google Scholar 

  2. Du, C., Li, C., Zheng, Y., Zhu, J., Zhang, B.: Collaborative filtering with user-item co-autoregressive models. In: AAAI, pp. 2175–2182 (2018)

    Google Scholar 

  3. Gao, C., et al.: Neural multi-task recommendation from multi-behavior data. In: ICDE, pp. 1554–1557 (2019)

    Google Scholar 

  4. Guo, L., Hua, L., Jia, R., Zhao, B., Wang, X., Cui, B.: Buying or browsing?: predicting real-time purchasing intent using attention-based deep network with multiple behavior. In: KDD, pp. 1984–1992 (2019)

    Google Scholar 

  5. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering. In: WWW, pp. 173–182 (2017)

    Google Scholar 

  6. Jin, B., Gao, C., He, X., Jin, D., Li, Y.: Multi-behavior recommendation with graph convolutional networks. In: SIGIR, pp. 659–668 (2020)

    Google Scholar 

  7. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  8. Mao, K., Zhu, J., Xiao, X., Lu, B., Wang, Z., He, X.: Ultragcn: ultra simplification of graph convolutional networks for recommendation. In: CIKM, pp. 1253–1262 (2021)

    Google Scholar 

  9. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. CoRR abs/1807.03748 (2018)

    Google Scholar 

  10. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: UAI, pp. 452–461 (2009)

    Google Scholar 

  11. Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: ESWC, vol. 10843, pp. 593–607 (2018)

    Google Scholar 

  12. Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: AutoRec: autoencoders meet collaborative filtering. In: WWW, pp. 111–112 (2015)

    Google Scholar 

  13. Wang, X., He, X., Wang, M., Feng, F., Chua, T.: Neural graph collaborative filtering. In: SIGIR, pp. 165–174 (2019)

    Google Scholar 

  14. Wu, S., Zhang, Y., Gao, C., Bian, K., Cui, B.: GARG: anonymous recommendation of point-of-interest in mobile networks by graph convolution network. Data Sci. Eng. 5(4), 433–447 (2020)

    Article  Google Scholar 

  15. Wu, Y., DuBois, C., Zheng, A.X., Ester, M.: Collaborative denoising auto-encoders for top-n recommender systems. In: WSDM, pp. 153–162 (2016)

    Google Scholar 

  16. Xia, L., Huang, C., Xu, Y., Dai, P.: Multi-behavior enhanced recommendation with cross-interaction collaborative relation modeling. In: ICDE, pp. 659–668 (2021)

    Google Scholar 

  17. Xia, L., Huang, C., Xu, Y., Dai, P., Zhang, B., Bo, L.: Multiplex behavioral relation learning for recommendation via memory augmented transformer network. In: SIGIR, pp. 2397–2406 (2020)

    Google Scholar 

  18. Xia, L., et al.: Knowledge-enhanced hierarchical graph transformer network for multi-behavior recommendation. In: AAAI, pp. 4486–4493 (2021)

    Google Scholar 

  19. Xia, L., Xu, Y., Huang, C., Dai, P., Bo, L.: Graph meta network for multi-behavior recommendation. In: SIGIR, pp. 757–766 (2021)

    Google Scholar 

  20. Xue, H., Dai, X., Zhang, J., Huang, S., Chen, J.: Deep matrix factorization models for recommender systems. In: IJCAI, pp. 3203–3209 (2017)

    Google Scholar 

  21. Yu, S., et al.: Leveraging tripartite interaction information from live stream e-commerce for improving product recommendation. In: KDD, pp. 3886–3894 (2021)

    Google Scholar 

  22. Zang, Y., Liu, Y.: GISDCN: a graph-based interpolation sequential recommender with deformable convolutional network. In: DASFAA, vol. 13246, pp. 289–297 (2022)

    Google Scholar 

  23. Zhang, W., Mao, J., Cao, Y., Xu, C.: Multiplex graph neural networks for multi-behavior recommendation. In: CIKM, pp. 2313–2316 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, W., Duan, L., Ding, X., Chen, X. (2023). MORO: A Multi-behavior Graph Contrast Network for Recommendation. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13423. Springer, Cham. https://doi.org/10.1007/978-3-031-25201-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25201-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25200-6

  • Online ISBN: 978-3-031-25201-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics