Skip to main content

Efficient Reductions and Algorithms for Subset Product

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13947))

Included in the following conference series:

Abstract

Given positive integers \(a_1, \ldots , a_n\) and a target integer t, the \(\mathsf {Subset~Product}\) problem asks to determine whether there exists a subset \(S \subseteq [n]\) such that \(\prod _{i \in S} a_i=t\). It differs from the Subset Sum problem where the multiplication operation is replaced by addition. There is a pseudopolynomial-time dynamic programming algorithm which solves the \(\mathsf {Subset~Product}\) in O(nt) time and \(\varOmega (t)\) space.

In this paper, we present a simple and elegant randomized algorithm for \(\mathsf {Subset~Product}\) in \(\tilde{O}(n + t^{o(1)})\) expected-time. Moreover, we also present a \(\textsf{poly}(nt)\) time and \(O(\log ^2 (nt))\) space deterministic algorithm.

In fact, we solve a more general problem called the \(\textsf{SimulSubsetSum}\). This problem was introduced by Kane 2010. Given k instances of Subset Sum, it asks to decide whether there is a ‘common’ solution to all the instances. Kane gave a logspace algorithm for this problem. We show a polynomial-time reduction from \(\mathsf {Subset~Product}\) to \(\textsf{SimulSubsetSum}\) and also give efficient algorithm for the latter. Our algorithms use multivariate FFT, power series and number-theoretic techniques, introduced by Jin and Wu (SOSA 2019) and Kane (2010).

The full version is available at https://drive.google.com/file/d/1xUX29eVZ_2J1zv062dH4V8Yc8NhqwV1X/view?usp=share_link.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Expected time complexity is \(\exp (O(\sqrt{\log t \log \log t}))\), which is smaller than \(t^{O(1/\sqrt{\log \log t})} =t^{o(1)}\), which will be the time taken in the next step. Moreover, we are interested in randomized algorithms, hence expected run-time is.

References

  1. Bazgan, C., Hugot, H., Vanderpooten, D.: Solving efficiently the 0–1 multi-objective knapsack problem. Comput. Oper. Res. 36(1), 260–279 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellman, R.E.: Dynamic programming (1957)

    Google Scholar 

  3. Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for the subset-sum problem. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 16–33. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_2

    Chapter  MATH  Google Scholar 

  4. Bringmann, K.: A near-linear pseudopolynomial time algorithm for subset sum. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1073–1084. SIAM (2017)

    Google Scholar 

  5. Bringmann, K., Wellnitz, P.: On near-linear-time algorithms for dense subset sum. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1777–1796. SIAM (2021)

    Google Scholar 

  6. Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an efficient and provable collision-resistant hash function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 165–182. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_11

    Chapter  Google Scholar 

  7. Draziotis, K.A., Martidis, V., Tiganourias, S.: Product subset problem: applications to number theory and cryptography. arXiv preprint arXiv:2002.07095 (2020)

  8. Dutta, P., Rajasree, M.S.: Algebraic algorithms for variants of subset sum. In: Balachandran, N., Inkulu, R. (eds.) CALDAM 2022. LNCS, vol. 13179, pp. 237–251. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95018-7_19

    Chapter  Google Scholar 

  9. Esser, A., May, A.: Low weight discrete logarithm and subset sum in 20. 65n with polynomial memory. memory 1, 2 (2020)

    Google Scholar 

  10. Faust, S., Masny, D., Venturi, D.: Chosen-ciphertext security from subset sum. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 35–46. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_2

    Chapter  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, San Francisco (1979)

    Google Scholar 

  12. Helm, A., May, A.: Subset sum quantumly in 1.17\(\hat{\,}\) n. In: 13th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2018). pp. 1–15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  13. Jin, C., Vyas, N., Williams, R.: Fast low-space algorithms for subset sum. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1757–1776. SIAM (2021)

    Google Scholar 

  14. Jin, C., Wu, H.: A simple near-linear pseudopolynomial time randomized algorithm for subset sum. arXiv preprint arXiv:1807.11597 (2018)

  15. Kane, D.M.: Unary subset-sum is in logspace. arXiv preprint arXiv:1012.1336 (2010)

  16. Kovalyov, M.Y., Pesch, E.: A generic approach to proving np-hardness of partition type problems. Discret. Appl. Math. 158(17), 1908–1912 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lenstra, H.W., Pomerance, C.: A rigorous time bound for factoring integers. J. Am. Math. Soc. 5(3), 483–516 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lewis, H.R.: Computers and Intractability. A Guide to the Theory of NP-Completeness, Freeman, San Francisco (1983)

    Google Scholar 

  19. Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives provably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 382–400. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_23

    Chapter  Google Scholar 

  20. Nagura, J.: On the interval containing at least one prime number. Proc. Jpn. Acad. 28(4), 177–181 (1952)

    MathSciNet  MATH  Google Scholar 

  21. Pferschy, U., Schauer, J., Thielen, C.: Approximating the product knapsack problem. Optim. Lett. 15, 2529–2540 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Sreekumar Rajasree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dutta, P., Rajasree, M.S. (2023). Efficient Reductions and Algorithms for Subset Product. In: Bagchi, A., Muthu, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2023. Lecture Notes in Computer Science, vol 13947. Springer, Cham. https://doi.org/10.1007/978-3-031-25211-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25211-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25210-5

  • Online ISBN: 978-3-031-25211-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics