Skip to main content

Cops and Robber on Oriented Graphs with Respect to Push Operation

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13947))

Included in the following conference series:

  • 427 Accesses

Abstract

Graph Searching games are extensively studied in the literature for their vast number of applications in artificial intelligence, robot motion planning, game planning, distributed computing, and graph theory. In particular, Cops and Robber is one of the most well-studied graph searching game, where a set of cops try to capture the position of a single robber. The cop number of a graph is the minimum number of cops required to capture the robber on the graph.

In an oriented graph \(\overrightarrow{G}\), the push operation on a vertex v reverses the orientation of all arcs incident on v. We define and study a variant of the game of Cops and Robber on oriented graphs, where the players also have the ability to push the vertices of the graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An oriented graph is a directed graph without self-loops and 2-cycles.

References

  1. Abraham, I., Gavoille, C., Gupta, A., Neiman, O., Talwar, K.: Cops, robbers, and threatening skeletons: Padded decomposition for minor-free graphs. SIAM J. Comput. 48(3), 1120–1145 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aigner, M., Fromme, M.: A game of cops and robbers. Discret. Appl. Math. 8(1), 1–12 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angelo, D., Navarra, A., Nisse, N.: A unified approach for gathering and exclusive searching on rings under weak assumptions. Distrib. Comput. 30, 17–48 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belmonte, R., Golovach, P.A., Heggernes, P., van’t Hof, P., Kamiński, M., Paulusma, D.: Detecting fixed patterns in chordal graphs in polynomial time. Algorithmica 69(3), 501–521 (2014)

    Google Scholar 

  5. Bradshaw, P., Hosseini, S.A., Turcotte, J.: Cops and robbers on directed and undirected abelian Cayley graphs. Eur. J. Comb. 97, 103383 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_9

    Chapter  Google Scholar 

  7. Darlington, E., Gibbons, C., Guy, K., Hauswald, J.: Cops and robbers on oriented graphs. Rose-Hulman Undergraduate Math. J. 17(1), 201–209 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Das, S., Gahlawat, H., Sahoo, U.K., Sen, S.: Cops and robber on some families of oriented graphs. Theor. Comput. Sci. 888, 31–40 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. de la Maza, S.G.H., Hosseini, S.A., Knox, F., Mohar, B., Reed, B.: Cops and robbers on oriented toroidal grids. Theoret. Comput. Sci. 857, 166–176 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fisher, D.C., Ryan, J.: Tournament games and positive tournaments. J. Graph Theory 19(2), 217–236 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frieze, A., Krivelevich, M., Loh, P.: Variations on cops and robbers. J. Graph Theory 69(4), 383–402 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gavenčiak, T.: Cop-win graphs with maximum capture-time. Discret. Math. 310(10–11), 1557–1563 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goldstein, A.S., Reingold, E.M.: The complexity of pursuit on a graph. Theoret. Comput. Sci. 143(1), 93–112 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition methods. Artif. Intell. 124(2), 243–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries. J. ACM 48(3), 431–498 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hahn, G., MacGillivray, G.: A note on \(k\)-cop, \(l\)-robber games on graphs. Discret. Math. 306(19–20), 2492–2497 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hamidoune, Y.O.: On a pursuit game on Cayley digraphs. Eur. J. Comb. 8(3), 289–295 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hosseini, S.A.: Game of cops and robbers on Eulerian digraphs. Ph.D. thesis, Simon Fraser University (2018)

    Google Scholar 

  19. Hosseini, S.A., Mohar, B.: Game of cops and robbers in oriented quotients of the integer grid. Discret. Math. 341(2), 439–450 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Isaza, A., Lu, J., Bulitko, V., Greiner, R.: A cover-based approach to multi-agent moving target pursuit. In: Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference, pp. 54–59. AAAI Press (2008)

    Google Scholar 

  21. Khatri, D., et al.: A study of cops and robbers in oriented graphs. arXiv:1811.06155 (2019)

  22. Kinnersley, W.B.: Cops and robbers is exptime-complete. J. Comb. Theory Ser. B 111, 201–220 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kinnersley, W.B.: Bounds on the length of a game of cops and robbers. Discret. Math. 341(9), 2508–2518 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klein, K., Suri, S.: Catch me if you can: Pursuit and capture in polygonal environments with obstacles. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI 2012), vol. 26, pp. 2010–2016 (2012)

    Google Scholar 

  25. Klostermeyer, W.F.: Pushing vertices and orienting edges. Ars Combinatoria 51, 65–76 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Klostermeyer, W.F., et al.: Hamiltonicity and reversing arcs in digraphs. J. Graph Theory 28(1), 13–30 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Loh, P., Oh, S.: Cops and robbers on planar directed graphs. J. Graph Theory 86(3), 329–340 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. MacGillivray, G., Wood, K.L.B.: Re-orienting tournaments by pushing vertices. Ars Combinatoria 57, 33–47 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Mosesian, K.M.: Strongly Basable graphs (Russian). Akad. Nauk. Armian. SSR Dokl. 54, 134–138 (1972)

    Google Scholar 

  30. Nisse, N.: Network decontamination. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities. LNCS, vol. 11340, pp. 516–548. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_19

    Chapter  Google Scholar 

  31. Parsons, T.D.: Pursuit-evasion in a graph. In: Alavi, Y., Lick, D.R. (eds.) Theory and Applications of Graphs. Lecture Notes in Mathematics, vol. 642, pp. 426–441. Springer, Heidelberg (1978). https://doi.org/10.1007/BFb0070400

    Chapter  Google Scholar 

  32. Parsons, T.D.: The search number of a connected graph. In: Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing, vol. XXI, pp. 549–554. Utilitas Mathematica (1978)

    Google Scholar 

  33. Pretzel, O.: On graphs that can be oriented as diagrams of ordered sets. Order 2, 25–40 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pretzel, O.: On reordering graphs by pushing down maximal vertices. Order 3, 135–153 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pretzel, O.: Orientations and edge functions on graphs. In: Surveys in Combinatorics. London Mathematical Society Lecture Notes, vol. 66, pp. 161–185 (1991)

    Google Scholar 

  36. Seymour, P.D., Thomas, R.: Graph searching and a min-max theorem for tree-width. J. Comb. Theory Ser. B 58(1), 22–33 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Slivova, V.: Cops and robber game on directed complete graphs. Bachelor’s thesis, Charles University in Prague (2015)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the IFCAM project “Applications of graph homomorphisms” (MA/IFCAM/18/39).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harmender Gahlawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, S., Gahlawat, H., Ramgopal, A., Sahoo, U.K., Sen, S. (2023). Cops and Robber on Oriented Graphs with Respect to Push Operation. In: Bagchi, A., Muthu, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2023. Lecture Notes in Computer Science, vol 13947. Springer, Cham. https://doi.org/10.1007/978-3-031-25211-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25211-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25210-5

  • Online ISBN: 978-3-031-25211-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics