Abstract
The accuracy of supervised deep learning algorithms is heavily dependent on the availability of annotated data and, in many cases, labeling this data accurately involves a very large outlay. Consequently, simulated data becomes an enticing option, since this data can be parameterized to resemble a real environment. However, the domain shift cannot be disregarded. To tackle this problem, we present a method which formulates an cloud-to-cloud translation as an image-to-image task from simulated to real scenarios. Our approach is capable of learning to extract the best features from the geometry of the environment, encode the information into a voxelized representation and generate a version similar to the one captured by a real sensor for complete scenarios. Our results on the CARLA to SemanticKITTI translation demonstrate that our method is able to provide adequate samples that help improve the accuracy, for selected categories of the SemanticKITTI validation set, of a semantic segmentation network trained only on real data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barrera, A., Beltrán, J., Guindel, C., Iglesias, J.A., García, F.: Cycle and semantic consistent adversarial domain adaptation for reducing simulation-to-real domain shift in lidar bird’s eye view. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 3081–3086. IEEE (2021)
Behley, J., et al.: Semantickitti: A dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9297–9307 (2019)
Borji, A.: Pros and cons of gan evaluation measures. Comput. Vis. Image Underst. 179, 41–65 (2019)
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: An open urban driving simulator. In: Conference on Robot Learning, pp. 1–16. PMLR (2017)
Jolicoeur-Martineau, A.: The relativistic discriminator: a key element missing from standard gan. arXiv preprint arXiv:1807.00734 (2018)
Liu, W., Ferstl, D., Schulter, S., Zebedin, L., Fua, P., Leistner, C.: Domain adaptation for semantic segmentation via patch-wise contrastive learning. arXiv preprint arXiv:2104.11056 (2021)
Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19
Qin, C., You, H., Wang, L., Kuo, C.C.J., Fu, Y.: Pointdan: A multi-scale 3d domain adaption network for point cloud representation. In: Advances in Neural Information Processing Systems 32 (2019)
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans. In: Advances in Neural Information Processing Systems 29 (2016)
Zhang, Y., et al.: Polarnet: An improved grid representation for online lidar point clouds semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9601–9610 (2020)
Zhao, S., et al.: ePointDA: An end-to-end simulation-to-real domain adaptation framework for LiDAR point cloud segmentation. arXiv preprint arXiv:2009.03456 (2020)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference On Computer Vision, pp. 2223–2232 (2017)
Acknowledgements
Research conducted within the project PEAVAUTO-CM- UC3M. The research project PEAVAUTO-CM-UC3M has been funded by the call “Programa de apoyo a la realización de proyectos interdisciplinares de I+D para jóvenes investigadores de la Universidad Carlos III de Madrid 2019-2020 under the frame of the Convenio Plurianual Comunidad de Madrid-Universidad Carlos III de Madrid.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Barrera, A., García, F., Iglesias, J.A. (2022). Contrastive Learning for Simulation-to-Real Domain Adaptation of LiDAR Data. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2022. EUROCAST 2022. Lecture Notes in Computer Science, vol 13789. Springer, Cham. https://doi.org/10.1007/978-3-031-25312-6_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-25312-6_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25311-9
Online ISBN: 978-3-031-25312-6
eBook Packages: Computer ScienceComputer Science (R0)