Skip to main content

Continuous Time Normalized Signal Trains for a Better Classification of Myoelectric Signals

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2022 (EUROCAST 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13789))

Included in the following conference series:

  • 675 Accesses

Abstract

State-of-the-art hand prostheses differ from those of previous generations, in that more hand positions and programmable gestures are available [4]. As an example, consider multi-finger prostheses like the i-limbTM ultra from Touch Bionics or the BebionicTM Hand from RSL Steeper. Both prosthetic effectors are primarily controlled by myoelectric signals, derived with two or more cutaneously applied sensors, placed atop residual muscles. After preprocessing and classification of these signals, three to five different movement states or hand positions can be accurately distinguished. Zardoshti-Kermani et al. [5] show that the classification becomes increasingly difficult as the number of gestures grows, because decision spaces and feature clusters overlap [3]. Since static separation becomes increasingly difficult, Hudgins et al. [3] and Attenberger [1] used time-dependencies inherent to electromyographic (EMG) signals to improve classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attenberger, A.: Time analysis for improved upper limb movement classification. Doctoral thesis, Universität der Bundeswehr München (2016)

    Google Scholar 

  2. Gaßner, P., Buchenrieder, K.: Improved classification of myoelectric signals by using normalized signal trains. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2019. LNCS, vol. 12014, pp. 372–379. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45096-0_46

    Chapter  Google Scholar 

  3. Hudgins, B., Parker, P., Scott, R.N.: A new strategy for multifunction myoelectric control 40(1), 82–94. https://doi.org/10.1109/10.204774. ISSN 0018-9294

  4. van der Riet, D., Stopforth, R., Bright, G., Diegel, O.: An overview and comparison of upper limb prosthetics. In: 2013 Africon, pp. 1–8 (2013). https://doi.org/10.1109/AFRCON.2013.6757590

  5. Zardoshti-Kermani, M., Wheeler, B.C., Badie, K., Hashemi, R.M.: EMG feature evaluation for movement control of upper extremity prostheses. IEEE Trans. Rehabil. Eng. 3(4), 324–333. https://doi.org/10.1109/86.481972

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Gaßner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaßner, P., Buchenrieder, K. (2022). Continuous Time Normalized Signal Trains for a Better Classification of Myoelectric Signals. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2022. EUROCAST 2022. Lecture Notes in Computer Science, vol 13789. Springer, Cham. https://doi.org/10.1007/978-3-031-25312-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25312-6_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25311-9

  • Online ISBN: 978-3-031-25312-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics