Abstract
In this paper odometry approaches that use radar data are analyzed. First, the importance of odometry is discussed along with applications which usually require accurate odometry estimation. Moreover, sensors that are often used for odometry estimation are mentioned as well as the possible drawbacks that these sensors may have. Finally, the benefits of using radar as a source for odometry estimation are discussed. Furthermore, the approaches to perform radar odometry are categorized, and one categorization is evaluated as cardinal, namely the division between the direct method and the indirect method. Therefore, the direct method and the indirect method are investigated and their characteristics are juxtaposed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Almalioglu, Y., Member, G.S., Turan, M., Lu, C.X., Trigoni, N., Markham, A.: Milli-RIO: ego-motion estimation with low-cost millimetre-wave radar. IEEE Sens. J. 21(3), 3314–3323 (2021)
Cen, S.H., Newman, P.: Radar-only ego-motion estimation in difficult settings via graph matching. In: Proceedings of - IEEE International Conference Robotics and Automation, pp. 298–304 (2019). https://doi.org/10.1109/ICRA.2019.8793990
Checchin, P., Gérossier, F., Blanc, C., Chapuis, R., Trassoudaine, L.: Radar scan matching SLAM using the fourier-mellin transform. In: Howard, A., Iagnemma, K., Kelly, A. (eds.) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 62, pp. 151–161. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13408-1_14
de Ponte Müller, F.: Survey on ranging sensors and cooperative techniques for relative positioning of vehicles. Sensors (Switzerland) 17(2), 1–27 (2017). https://doi.org/10.3390/s17020271
Doer, C., Trommer, G.F.: An ekf based approach to radar inertial odometry. In: 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 152–159 (2020). https://doi.org/10.1109/MFI49285.2020.9235254
Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–108 (2006). https://doi.org/10.1109/MRA.2006.1638022
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692
Gamba, J.: Radar Signal Processing for Autonomous Driving, 1st edn. Springer, Heidelberg (2019). https://doi.org/10.1007/978-981-13-9193-4
Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based SLAM with Rao-Blackwellized particle filters by adaptive proposals and selective resampling. In: Proceedings - IEEE International Conference on Robotics Automation, vol. 2005, pp. 2432–2437 (2005). https://doi.org/10.1109/ROBOT.2005.1570477
Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2D LIDAR SLAM. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 1271–1278 (2016). https://doi.org/10.1109/ICRA.2016.7487258
, Kramer, A., Stahoviak, C., Santamaria-Navarro, A., Agha-Mohammadi, A.A., Heckman, C.: Radar-inertial ego-velocity estimation for visually degraded environments. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 5739–5746 (2020). https://doi.org/10.1109/ICRA40945.2020.9196666
Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2D range scans. J. Intell. Rob. Syst. 18(3), 249–275 (1997). https://doi.org/10.1023/a:1007957421070
Magnusson, M., Lilienthal, A., Duckett, T.: Scan registration for autonomous mining vehicles using 3d-ndt. J. Field Rob. 24, 803–827 (2007). https://doi.org/10.1002/rob.20204
Mohamed, S.A., Haghbayan, M.H., Westerlund, T., Heikkonen, J., Tenhunen, H., Plosila, J.: A survey on odometry for autonomous navigation systems. IEEE Access 7, 97466–97486 (2019). https://doi.org/10.1109/ACCESS.2019.2929133
Monaco, C.D., Brennan, S.N.: Radarodo: ego-motion estimation from doppler and spatial data in radar images. IEEE Trans. Intell. Veh. 5(3), 475–484 (2020). https://doi.org/10.1109/TIV.2020.2973536
Park, Y.S., Shin, Y.S., Kim, A.: PhaRaO: direct radar odometry using phase correlation. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 2617–2623 (2020). https://doi.org/10.1109/ICRA40945.2020.9197231
Quist, E.B., Niedfeldt, P.C., Beard, R.W.: Radar odometry with recursive-ransac. IEEE Trans. Aeros. Electron. Syst. 52(4), 1618–1630 (2016). https://doi.org/10.1109/TAES.2016.140829
Reddy, B., Chatterji, B.: An fft-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996). https://doi.org/10.1109/83.506761
Louback da Silva Lubanco, D., Kaineder, G., Scherhäufl, M., Schlechter, T., Salmen, D.: A comparison about the reflectivity of different materials with active sensors. In: 2020 5th International Conference on Robotics and Automation Engineering (ICRAE), pp. 59–63 (2020). https://doi.org/10.1109/ICRAE50850.2020.9310883
Acknowledgements
This work has been supported by the COMET-K2 Center of the Linz Center of Mechatronics (LCM) funded by the Austrian federal government and the federal state of Upper Austria.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Louback da Silva Lubanco, D., Schlechter, T., Pichler-Scheder, M., Kastl, C. (2022). Survey on Radar Odometry. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2022. EUROCAST 2022. Lecture Notes in Computer Science, vol 13789. Springer, Cham. https://doi.org/10.1007/978-3-031-25312-6_73
Download citation
DOI: https://doi.org/10.1007/978-3-031-25312-6_73
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25311-9
Online ISBN: 978-3-031-25312-6
eBook Packages: Computer ScienceComputer Science (R0)