Skip to main content

Survey on Radar Odometry

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2022 (EUROCAST 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13789))

Included in the following conference series:

  • 1003 Accesses

Abstract

In this paper odometry approaches that use radar data are analyzed. First, the importance of odometry is discussed along with applications which usually require accurate odometry estimation. Moreover, sensors that are often used for odometry estimation are mentioned as well as the possible drawbacks that these sensors may have. Finally, the benefits of using radar as a source for odometry estimation are discussed. Furthermore, the approaches to perform radar odometry are categorized, and one categorization is evaluated as cardinal, namely the division between the direct method and the indirect method. Therefore, the direct method and the indirect method are investigated and their characteristics are juxtaposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almalioglu, Y., Member, G.S., Turan, M., Lu, C.X., Trigoni, N., Markham, A.: Milli-RIO: ego-motion estimation with low-cost millimetre-wave radar. IEEE Sens. J. 21(3), 3314–3323 (2021)

    Article  Google Scholar 

  2. Cen, S.H., Newman, P.: Radar-only ego-motion estimation in difficult settings via graph matching. In: Proceedings of - IEEE International Conference Robotics and Automation, pp. 298–304 (2019). https://doi.org/10.1109/ICRA.2019.8793990

  3. Checchin, P., Gérossier, F., Blanc, C., Chapuis, R., Trassoudaine, L.: Radar scan matching SLAM using the fourier-mellin transform. In: Howard, A., Iagnemma, K., Kelly, A. (eds.) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 62, pp. 151–161. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13408-1_14

  4. de Ponte Müller, F.: Survey on ranging sensors and cooperative techniques for relative positioning of vehicles. Sensors (Switzerland) 17(2), 1–27 (2017). https://doi.org/10.3390/s17020271

    Article  Google Scholar 

  5. Doer, C., Trommer, G.F.: An ekf based approach to radar inertial odometry. In: 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 152–159 (2020). https://doi.org/10.1109/MFI49285.2020.9235254

  6. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–108 (2006). https://doi.org/10.1109/MRA.2006.1638022

    Article  Google Scholar 

  7. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

  8. Gamba, J.: Radar Signal Processing for Autonomous Driving, 1st edn. Springer, Heidelberg (2019). https://doi.org/10.1007/978-981-13-9193-4

    Book  Google Scholar 

  9. Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based SLAM with Rao-Blackwellized particle filters by adaptive proposals and selective resampling. In: Proceedings - IEEE International Conference on Robotics Automation, vol. 2005, pp. 2432–2437 (2005). https://doi.org/10.1109/ROBOT.2005.1570477

  10. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2D LIDAR SLAM. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 1271–1278 (2016). https://doi.org/10.1109/ICRA.2016.7487258

  11. , Kramer, A., Stahoviak, C., Santamaria-Navarro, A., Agha-Mohammadi, A.A., Heckman, C.: Radar-inertial ego-velocity estimation for visually degraded environments. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 5739–5746 (2020). https://doi.org/10.1109/ICRA40945.2020.9196666

  12. Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2D range scans. J. Intell. Rob. Syst. 18(3), 249–275 (1997). https://doi.org/10.1023/a:1007957421070

    Article  Google Scholar 

  13. Magnusson, M., Lilienthal, A., Duckett, T.: Scan registration for autonomous mining vehicles using 3d-ndt. J. Field Rob. 24, 803–827 (2007). https://doi.org/10.1002/rob.20204

  14. Mohamed, S.A., Haghbayan, M.H., Westerlund, T., Heikkonen, J., Tenhunen, H., Plosila, J.: A survey on odometry for autonomous navigation systems. IEEE Access 7, 97466–97486 (2019). https://doi.org/10.1109/ACCESS.2019.2929133

    Article  Google Scholar 

  15. Monaco, C.D., Brennan, S.N.: Radarodo: ego-motion estimation from doppler and spatial data in radar images. IEEE Trans. Intell. Veh. 5(3), 475–484 (2020). https://doi.org/10.1109/TIV.2020.2973536

    Article  Google Scholar 

  16. Park, Y.S., Shin, Y.S., Kim, A.: PhaRaO: direct radar odometry using phase correlation. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 2617–2623 (2020). https://doi.org/10.1109/ICRA40945.2020.9197231

  17. Quist, E.B., Niedfeldt, P.C., Beard, R.W.: Radar odometry with recursive-ransac. IEEE Trans. Aeros. Electron. Syst. 52(4), 1618–1630 (2016). https://doi.org/10.1109/TAES.2016.140829

    Article  Google Scholar 

  18. Reddy, B., Chatterji, B.: An fft-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996). https://doi.org/10.1109/83.506761

    Article  Google Scholar 

  19. Louback da Silva Lubanco, D., Kaineder, G., Scherhäufl, M., Schlechter, T., Salmen, D.: A comparison about the reflectivity of different materials with active sensors. In: 2020 5th International Conference on Robotics and Automation Engineering (ICRAE), pp. 59–63 (2020). https://doi.org/10.1109/ICRAE50850.2020.9310883

Download references

Acknowledgements

This work has been supported by the COMET-K2 Center of the Linz Center of Mechatronics (LCM) funded by the Austrian federal government and the federal state of Upper Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Louback da Silva Lubanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Louback da Silva Lubanco, D., Schlechter, T., Pichler-Scheder, M., Kastl, C. (2022). Survey on Radar Odometry. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2022. EUROCAST 2022. Lecture Notes in Computer Science, vol 13789. Springer, Cham. https://doi.org/10.1007/978-3-031-25312-6_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25312-6_73

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25311-9

  • Online ISBN: 978-3-031-25312-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics