Skip to main content

The Label Ambiguity Problem in Process Prediction

  • Conference paper
  • First Online:
Business Process Management Workshops (BPM 2022)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 460))

Included in the following conference series:

  • 963 Accesses

Abstract

Predictive process analytics enables proactive situational aw-areness by predicting the future of ongoing process instances. To provide a fair comparison between different approaches developed for process prediction, they have been evaluated on publicly available event logs using the next step prediction task. This paper aims to raise awareness of the label ambiguity problem in the context of process prediction by investigating how uncertainty in the ground truth labels affects next step prediction. Label ambiguity arises from cases in the event log that have different continuation options. We argue that the uncertainty created thereby negatively affects evaluation results. To this end, we present a synthetic example that illustrates the problem of label ambiguity in process prediction and quantify the occurrence of ambiguous ground truth labels in common benchmark datasets. Finally, we discuss implications and present ideas that aim to initiate a discussion on how to deal with label ambiguity in process prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://doi.org/10.17632/39bp3vv62t.1.

  2. 2.

    https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.

  3. 3.

    https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

  4. 4.

    https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07.

References

  1. van der Aalst, W.: Process Mining: Data Science in Action, 2nd edn. Springer, Heidelberg (2016)

    Book  Google Scholar 

  2. De Koninck, P., vanden Broucke, S., De Weerdt, J.: act2vec, trace2vec, log2vec, and model2vec: representation learning for business processes. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 305–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_18

    Chapter  Google Scholar 

  3. Evermann, J., Rehse, J.-R., Fettke, P.: A deep learning approach for predicting process behaviour at runtime. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 327–338. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7_24

    Chapter  Google Scholar 

  4. Gao, B.B., Xing, C., Xie, C.W., Wu, J., Geng, X.: Deep label distribution learning with label ambiguity. IEEE Trans. Image Process. 26(6), 2825–2838 (2017)

    Article  Google Scholar 

  5. Kuss, E., Leopold, H., van der Aa, H., Stuckenschmidt, H., Reijers, H.A.: A probabilistic evaluation procedure for process model matching techniques. Data Knowl. Eng. 117, 393–406 (2018)

    Article  Google Scholar 

  6. Neu, D.A., Lahann, J., Fettke, P.: A systematic literature review on state-of-the-art deep learning methods for process prediction. Artif. Intell. Rev. 55, 801–827 (2021). https://doi.org/10.1007/s10462-021-09960-8

    Article  Google Scholar 

  7. Nolle, T., Seeliger, A., Mühlhäuser, M.: BINet: multivariate business process anomaly detection using deep learning. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 271–287. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_16

    Chapter  Google Scholar 

  8. Pegoraro, M.: Probabilistic and non-deterministic event data in process mining: embedding uncertainty in process analysis techniques. In: Proceedings of the Doctoral Consortium Papers Presented at the 34th International Conference on Advanced Information Systems Engineering (CAiSE 2022) (2022)

    Google Scholar 

  9. Pfeiffer, P., Lahann, J., Fettke, P.: Multivariate business process representation learning utilizing Gramian angular fields and convolutional neural networks. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 327–344. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_21

    Chapter  Google Scholar 

  10. Portolani, P., Brusaferri, A., Ballarino, A., Matteucci, M.: Uncertainty in predictive process monitoring. In: Ciucci, D., et al. (eds.) IPMU 2022. CCIS, vol. 1602, pp. 547–559. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08974-9_44

    Chapter  Google Scholar 

  11. Rama-Maneiro, E., Vidal, J., Lama, M.: Deep learning for predictive business process monitoring: Review and benchmark. IEEE Trans. Serv. Comput. (2021)

    Google Scholar 

Download references

Acknowledgement

Part of this work has been done funded by the project SmartVigilance (FKZ: 01IS20028C) with financial support by the Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Pfeiffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pfeiffer, P., Lahann, J., Fettke, P. (2023). The Label Ambiguity Problem in Process Prediction. In: Cabanillas, C., Garmann-Johnsen, N.F., Koschmider, A. (eds) Business Process Management Workshops. BPM 2022. Lecture Notes in Business Information Processing, vol 460. Springer, Cham. https://doi.org/10.1007/978-3-031-25383-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25383-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25382-9

  • Online ISBN: 978-3-031-25383-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics