Skip to main content

The Cloud Continuum for Military Deployable Networks: Challenges and Opportunities

  • Conference paper
  • First Online:
Computer Security. ESORICS 2022 International Workshops (ESORICS 2022)

Abstract

Due to the constant demand for novel network services, including those envisioned by 5G technologies and beyond, the cloud computing paradigm has recently evolved towards distributed systems located preferably at the edge of networks. Fog, edge and even mist computing have emerged in this regard, providing multiple benefits such as low latency or bolstering security. In the specific area of military deployable networks, this so-called cloud continuum has fostered the appearance of multiple use cases, which will be analyzed in detail in this paper, together with their current and future trends in the field. This survey includes works from diverse areas, such as tactical edge, combat cloud or cyber-physical environments, for example. The main objective is to overview the main challenges and opportunities brought by these technologies, as well as future research lines, so that researchers in the field could gather and examine them with a global vision, taking into consideration the specific characteristics of military scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amazon Web Services. https://aws.amazon.com/

  2. Google Cloud. https://cloud.google.com/

  3. Microsoft’s Azure. https://azure.microsoft.com/

  4. Department of Defence, United States of America, DOD Cloud Strategy (2019)

    Google Scholar 

  5. 5G Alliance for Connected Industries and Automation (5GACIA) (2020). https://www.5g-acia.org/

  6. The United States Army Cloud Plan 2020 (2020)

    Google Scholar 

  7. DGR/MEC-0036ConstrainedDevice (2022)

    Google Scholar 

  8. Report on the cybersecurity of Open RAN. Technical report, NIS Cooperation Group (2022)

    Google Scholar 

  9. Abdelzaher, T., et al.: Will distributed computing revolutionize peace? The emergence of battlefield IoT. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp. 1129–1138 (2018). https://doi.org/10.1109/ICDCS.2018.00112

  10. Abdelzaher, T., et al.: Toward an internet of battlefield things: a resilience perspective. Computer 51(11), 24–36 (2018). https://doi.org/10.1109/MC.2018.2876048

    Article  Google Scholar 

  11. Alguliyev, R., Imamverdiyev, Y., Sukhostat, L.: Cyber-physical systems and their security issues. Comput. Ind. 100, 212–223 (2018). https://doi.org/10.1016/j.compind.2018.04.017

    Article  Google Scholar 

  12. Andresky, N., Taliaferro, A.: Operationalizing artificial intelligence for multi-domain operations. Technical report, US Army Futures and Concepts Center Future Warfare Division (2019)

    Google Scholar 

  13. Anwar, A.H., Leslie, N.O., Kamhoua, C.A.: Honeypot allocation for cyber deception in internet of battlefield things systems. In: MILCOM 2021–2021 IEEE Military Communications Conference (MILCOM), pp. 1005–1010 (2021). https://doi.org/10.1109/MILCOM52596.2021.9652927

  14. Baldini, I., et al.: Serverless computing: current trends and open problems. In: Chaudhary, S., Somani, G., Buyya, R. (eds.) Research Advances in Cloud Computing, pp. 1–20. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5026-8_1

    Chapter  Google Scholar 

  15. Bera, B., Das, A.K., Garg, S., Piran, M.J., Hossain, M.S.: Access control protocol for battlefield surveillance in drone-assisted IoT environment. IEEE Internet Things J. 9(4), 2708–2721 (2021). https://doi.org/10.1109/JIOT.2020.3049003

    Article  Google Scholar 

  16. Bhaiyat, H., Sithungu, S.: Cyberwarfare and its effects on critical infrastructure. In: International Conference on Cyber Warfare and Security, vol. 17, pp. 536–543 (2022)

    Google Scholar 

  17. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

    Article  Google Scholar 

  18. Challenger, L.E.: Naval tactical cloud computing. Technical report, Gravely Naval Research Group, Naval War College Newport United States (2017)

    Google Scholar 

  19. Chekired, D.A., Khoukhi, L.: Distributed SDN-based C4ISR communications: a delay-tolerant network for trusted tactical cloudlets. In: 2019 International Conference on Military Communications and Information Systems (ICMCIS), pp. 1–7 (2019). https://doi.org/10.1109/ICMCIS.2019.8842820

  20. Chin, P., et al.: TAK-ML: applying machine learning at the tactical edge. In: MILCOM 2021–2021 IEEE Military Communications Conference (MILCOM), pp. 108–114 (2021). https://doi.org/10.1109/MILCOM52596.2021.9652909

  21. Cho, S., Hwang, S., Shin, W., Kim, N., In, H.P.: Design of military service framework for enabling migration to military SaaS cloud environment. Electronics 10(5), 572 (2021). https://doi.org/10.3390/electronics10050572

    Article  Google Scholar 

  22. Department of Defense (DoD): Cloud Native Access Point (CNAP) Reference Design (RD), July 2021

    Google Scholar 

  23. Dutta, P., Dutta, P.: Comparative study of cloud services offered by Amazon, Microsoft & Google. Int. J. Trend Sci. Res. Dev. 3(3), 981–985 (2019)

    MathSciNet  Google Scholar 

  24. Fraga-Lamas, P., Fernández-Caramés, T.M., Suárez-Albela, M., Castedo, L., González-López, M.: A review on Internet of Things for defense and public safety. Sensors 16(10), 1644 (2016). https://doi.org/10.3390/s16101644

    Article  Google Scholar 

  25. Gady, F.S., Stronell, A.: Cyber Capabilities and Multi-Domain Operations in Future High-Intensity Warfare in 2030. Cyber Threats and NATO 2030: Horizon Scanning and Analysis, p. 151 (2020)

    Google Scholar 

  26. Gao, W.: Opportunistic peer-to-peer mobile cloud computing at the tactical edge. In: 2014 IEEE Military Communications Conference, pp. 1614–1620 (2014). https://doi.org/10.1109/MILCOM.2014.265

  27. Ghimire, B., Rawat, D.B., Liu, C., Li, J.: Sharding-enabled blockchain for software-defined internet of unmanned vehicles in the battlefield. IEEE Netw. 35(1), 101–107 (2021). https://doi.org/10.1109/MNET.011.2000214

    Article  Google Scholar 

  28. Golam, M., Lee, J.M., Kim, D.S.: A UAV-assisted blockchain based secure device-to-device communication in Internet of military Things. In: 2020 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1896–1898 (2020). https://doi.org/10.1109/ICTC49870.2020.9289282

  29. Gupta, B., Mittal, P., Mufti, T.: A review on Amazon web service (AWS), Microsoft azure & Google cloud platform (GCP) services (2021)

    Google Scholar 

  30. Hassan, S.S., Tun, Y.K., Saad, W., Han, Z., Hong, C.S.: Blue data computation maximization in 6G space-air-sea non-terrestrial networks. In: 2021 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2021). https://doi.org/10.1109/GLOBECOM46510.2021.9685488

  31. Hayes, B.: Cloud computing (2008)

    Google Scholar 

  32. He, Y., Huang, D., Chen, L., Ni, Y., Ma, X.: A survey on zero trust architecture: challenges and future trends. Wirel. Commun. Mob. Comput. 2022, 1–13 (2022)

    Google Scholar 

  33. Jin, A.S., et al.: Resilience of cyber-physical systems: role of AI, digital twins and edge computing. IEEE Eng. Manag. Rev. 50(2), 195–203 (2022). https://doi.org/10.1109/EMR.2022.3172649

    Article  Google Scholar 

  34. Kannimuthu, P., Thangamuthu, J.: Decision tree trust (DTTrust)-based authentication mechanism to secure RPL routing protocol on internet of battlefield thing (IoBT). Int. J. Bus. Data Commun. Netw. (IJBDCN) 17(1), 1–23 (2021)

    Article  Google Scholar 

  35. Karabacak, B., Whittaker, T.: Zero trust and advanced persistent threats: who will win the war? In: International Conference on Cyber Warfare and Security, vol. 17, pp. 92–101 (2022)

    Google Scholar 

  36. Kekki, S., et al.: MEC in 5G networks. ETSI white paper 28, 1–28 (2018)

    Google Scholar 

  37. Khan, L.U., Yaqoob, I., Tran, N.H., Han, Z., Hong, C.S.: Network slicing: recent advances, taxonomy, requirements, and open research challenges. IEEE Access 8, 36009–36028 (2020). https://doi.org/10.1109/ACCESS.2020.2975072

    Article  Google Scholar 

  38. Kim, J., Kim, K., Jang, M.: Cyber-physical battlefield platform for large-scale cybersecurity exercises. In: 2019 11th International Conference on Cyber Conflict (CyCon), vol. 900, pp. 1–19 (2019). https://doi.org/10.23919/CYCON.2019.8756901

  39. Kim, S.: Cooperative federated learning-based task offloading scheme for tactical edge networks. IEEE Access 9, 145739–145747 (2021). https://doi.org/10.1109/ACCESS.2021.3123313

    Article  Google Scholar 

  40. Kiser, A., Hess, J., Bouhafa, E.M., Williams, S.: The combat cloud: enabling multi-domain command and control across the range of military operations. Technical report, Air Command and Staff College, Maxwell AFB, Al Maxwell AFB, United States (2017)

    Google Scholar 

  41. Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015). https://doi.org/10.1109/JPROC.2014.2371999

    Article  Google Scholar 

  42. Kumar, S., Kumar, S., Lobiyal, D.K.: MWLP-DP: mobile war-fighters location prediction for dark phase in Internet of Battlefield Things. Trans. Emerg. Telecommun. Technol. 33(4), e4397 (2021)

    Article  Google Scholar 

  43. Laird, R.: The next phase of air power: crafting and enabling the aerospace combat cloud. Second Line of Defense (2014). Accessed 20 Nov 2014

    Google Scholar 

  44. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks. Hotnets-IX, Association for Computing Machinery, New York (2010). https://doi.org/10.1145/1868447.1868466

  45. Lebeda, F.J., Zalatoris, J.J., Scheerer, J.B.: Government cloud computing policies: potential opportunities for advancing military biomedical research. Mil. Med. 183(11–12), e438–e447 (2018). https://doi.org/10.1093/milmed/usx114

    Article  Google Scholar 

  46. Lewis, G., Echeverría, S., Simanta, S., Bradshaw, B., Root, J.: Tactical cloudlets: moving cloud computing to the edge. In: 2014 IEEE Military Communications Conference, pp. 1440–1446 (2014). https://doi.org/10.1109/MILCOM.2014.238

  47. Li, B., Liang, S., Tian, L., Chen, D., Zhang, M.: An adaptive task scheduling method for networked UAV combat cloud system based on virtual machine and task migration. Math. Probl. Eng. 2020, 1–12 (2020)

    Google Scholar 

  48. Li, S., Yang, Q., Xing, J., Yuan, S.: Preliminary study on the application of digital twin in military engineering and equipment. In: 2020 Chinese Automation Congress (CAC), pp. 7249–7255 (2020). https://doi.org/10.1109/CAC51589.2020.9326911

  49. Lim, H., Kim, Y.: A design of network mobility management on cloud native tactical edge cloud. In: 2022 International Conference on Information Networking (ICOIN), pp. 168–170 (2022). https://doi.org/10.1109/ICOIN53446.2022.9687220

  50. Machi, V.: Atos’ Cyril Dujardin on European defense opportunities in 5G tech (2022)

    Google Scholar 

  51. Mehraj, S., Banday, M.T.: Establishing a zero trust strategy in cloud computing environment. In: 2020 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–6 (2020). https://doi.org/10.1109/ICCCI48352.2020.9104214

  52. Mendi, A.F., Erol, T., Dogan, D.: Digital twin in the military field. IEEE Internet Comput. 26(5), 33–40 (2022). https://doi.org/10.1109/MIC.2021.3055153

    Article  Google Scholar 

  53. Mickel, D.J.: A clouded future: on combat clouds in the US and Europe and their impact on NATO’s capability gaps, August 2019. http://essay.utwente.nl/79352/

  54. Milojicic, D.: The edge-to-cloud continuum. Computer 53(11), 16–25 (2020)

    Article  Google Scholar 

  55. Montero, R.S., Rojas, E., Carrillo, A.A., Llorente, I.M.: Extending the cloud to the network edge. Computer 50(4), 91–95 (2017). https://doi.org/10.1109/MC.2017.118

    Article  Google Scholar 

  56. Mourad, A., Yang, R., Lehne, P.H., de la Oliva, A.: Towards 6G: evolution of key performance indicators and technology trends. In: 2020 2nd 6G Wireless Summit (6G SUMMIT), pp. 1–5 (2020)

    Google Scholar 

  57. Nair, B., Bhanu, S.: Task scheduling in fog node within the tactical cloud. Defence Sci. J. 72(1), 49–55 (2022)

    Article  Google Scholar 

  58. Nguyen, H., Yego, K., Sioutis, C.: BGP based software defined networks for resilient combat cloud. In: 2020 Military Communications and Information Systems Conference (MilCIS), pp. 1–6 (2020)

    Google Scholar 

  59. van Niekerk, B.: Information warfare and the connected battlefield. In: DIACC - Dubai International Air Chef’s Conference (2021)

    Google Scholar 

  60. Pan, J., Yang, Z.: Cybersecurity challenges and opportunities in the new “edge computing + IoT” world. In: Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization, SDN-NFV Sec 2018, pp. 29–32. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3180465.3180470

  61. Pang, K., Xiong, Q.: Semantic modeling framework for mission-oriented military systems and combat cloud control. In: 2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE), pp. 200–204 (2021)

    Google Scholar 

  62. Papakostas, D., Kasidakis, T., Fragkou, E., Katsaros, D.: Backbones for internet of battlefield things. In: 2021 16th Annual Conference on Wireless On-Demand Network Systems and Services Conference (WONS), pp. 1–8 (2021). https://doi.org/10.23919/WONS51326.2021.9415560

  63. von Rechenberg, M., Rettore, P.H.L., Lopes, R.R.F., Sevenich, P.: Software-defined networking applied in tactical networks: problems, solutions and open issues. In: 2021 International Conference on Military Communication and Information Systems (ICMCIS), pp. 1–8 (2021). https://doi.org/10.1109/ICMCIS52405.2021.9486399

  64. Rieks, A., Mannheim, H.: The Combat Cloud: Air C2 and Warfighting in a Multi-Domain Battlespace. Armament & Technology (2022)

    Google Scholar 

  65. Rojas, E., Hosseini, H., Gomez, C., Carrascal, D., Rodrigues Cotrim, J.: Outperforming RPL with scalable routing based on meaningful MAC addressing. Ad Hoc Netw. 114, 102433 (2021). https://doi.org/10.1016/j.adhoc.2021.102433

    Article  Google Scholar 

  66. Rothenhaus, K., De Soto, K., Nguyen, E., Millard, J.: Applying a DEVelopment OPerationS (DevOps) reference architecture to accelerate delivery of emerging technologies in data analytics, deep learning, and artificial intelligence to the Afloat US Navy (2018)

    Google Scholar 

  67. Russell, S., Abdelzaher, T.: The internet of battlefield things: the next generation of command, control, communications and intelligence (C3I) decision-making. In: MILCOM 2018–2018 IEEE Military Communications Conference (MILCOM), pp. 737–742 (2018). https://doi.org/10.1109/MILCOM.2018.8599853

  68. Russell, S., Abdelzaher, T., Suri, N.: Multi-domain effects and the internet of battlefield things. In: MILCOM 2019–2019 IEEE Military Communications Conference (MILCOM), pp. 724–730 (2019). https://doi.org/10.1109/MILCOM47813.2019.9020925

  69. Schanz, M.V.: The combat cloud. Air Force Magazine, July 2014

    Google Scholar 

  70. National Academies of Sciences, Engineering, and Medicine: Energizing Data-Driven Operations at the Tactical Edge: Challenges and Concerns. The National Academies Press, Washington, DC (2021). https://doi.org/10.17226/26183

  71. Shahid, H., et al.: Machine learning-based mist computing enabled Internet of Battlefield Things. ACM Trans. Internet Technol. 21(4), 1–26 (2021)

    Article  Google Scholar 

  72. Shang, B., Yi, Y., Liu, L.: Computing over space-air-ground integrated networks: challenges and opportunities. IEEE Netw. 35(4), 302–309 (2021)

    Article  Google Scholar 

  73. da Silva, M.M., Guerreiro, J.: On the 5G and beyond. Appl. Sci. 10(20), 7091 (2020). https://doi.org/10.3390/app10207091

    Article  Google Scholar 

  74. Simanta, S., Lewis, G.A., Morris, E., Ha, K., Stayanarayanan, M.: Cloud computing at the tactical edge. Technical report, Carnegie-Mellon University, Software Engineering Institute, Pittsburgh, PA (2012)

    Google Scholar 

  75. Smith, W., et al.: Cloud computing in tactical environments. In: MILCOM 2017–2017 IEEE Military Communications Conference (MILCOM), pp. 882–887 (2017). https://doi.org/10.1109/MILCOM.2017.8170823

  76. Sotelo Monge, M.A., Maestre Vidal, J.: Conceptualization and cases of study on cyber operations against the sustainability of the tactical edge. Future Gener. Comput. Syst. 125, 869–890 (2021)

    Article  Google Scholar 

  77. Sturzinger, E.M., Lowrance, C.J., Faber, I.J., Choi, J.J., MacCalman, A.D.: Improving the performance of AI models in tactical environments using a hybrid cloud architecture. In: Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III, vol. 11746, p. 1174607. International Society for Optics and Photonics (2021)

    Google Scholar 

  78. Tang, L., Hu, H., Wang, Z., Wang, J., Li, Y.: Microservice architecture design for big data in tactical cloud. In: Tian, Y., Ma, T., Khan, M.K. (eds.) ICBDS 2019. CCIS, vol. 1210, pp. 402–416. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-7530-3_31

    Chapter  Google Scholar 

  79. Toth, S., Hughes, W.: The journey to collaborative AI at the tactical edge (CATE). In: Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III, vol. 11746, pp. 144–163. SPIE (2021)

    Google Scholar 

  80. Visky, M.G.: Cyber-physical battlefield for cyber exercises. In: 5th Interdisciplinary Cyber Research Conference 2019, p. 10 (2019)

    Google Scholar 

  81. Vogel, D.: Future Combat Air System: too big to fail; differing perceptions and high complexity jeopardise success of Strategic Armament Project (2021)

    Google Scholar 

  82. Wang, Y., Zhang, N., Li, H., Cao, J.: Research on digital twin framework of military large-scale UAV based on cloud computing. In: Journal of Physics: Conference Series, vol. 1738, no. 1, p. 012052, January 2021

    Google Scholar 

  83. Wood, P., Rossiter, D., Rose, D.: Reliability of cloud-based processing for satellite data. In: 2021 IEEE Aerospace Conference (50100), pp. 1–8 (2021)

    Google Scholar 

  84. Yang, H., et al.: Dispersed computing for tactical edge in future wars: vision, architecture, and challenges. Wirel. Commun. Mob. Comput. 2021, 1–31 (2021)

    Google Scholar 

  85. Yego, K., Thyer, M., Jones, T., Davidson, R.: A heterogeneous tactical cloud architecture for emergency services search and rescue operations. In: 2020 Military Communications and Information Systems Conference (MilCIS), pp. 1–6 (2020)

    Google Scholar 

  86. Yi, B., Wang, X., Li, K., Das, S.K., Huang, M.: A comprehensive survey of Network Function Virtualization. Comput. Netw. 133, 212–262 (2018)

    Article  Google Scholar 

  87. Yousefpour, A., et al.: All one needs to know about fog computing and related edge computing paradigms: a complete survey. J. Syst. Architect. 98, 289–330 (2019). https://doi.org/10.1016/j.sysarc.2019.02.009

    Article  Google Scholar 

  88. Zacarias, I., Gaspary, L.P., Kohl, A., Fernandes, R.Q.A., Stocchero, J.M., de Freitas, E.P.: Combining software-defined and delay-tolerant approaches in last-mile tactical edge networking. IEEE Commun. Mag. 55(10), 22–29 (2017). https://doi.org/10.1109/MCOM.2017.1700239

    Article  Google Scholar 

  89. Zhao, J., Han, C., Cui, Z., Wang, R., Yang, T.: Cyber-physical battlefield perception systems based on machine learning technology for data delivery. Peer-to-Peer Netw. Appl. 12(6), 1785–1798 (2019). https://doi.org/10.1007/s12083-019-00769-5

    Article  Google Scholar 

  90. Zhu, L., Majumdar, S., Ekenna, C.: An invisible warfare with the internet of battlefield things: a literature review. Hum. Behav. Emerg. Technol. 3(2), 255–260 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by grants from Comunidad de Madrid through projects TAPIR-CM (S2018/TCS-4496) and MistLETOE-CM (CM/JIN/2021-006), and by project ONENESS (PID2020-116361RA-I00) of the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Rojas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rojas, E., Lopez-Pajares, D., Alvarez-Horcajo, J., Llopis Sánchez, S. (2023). The Cloud Continuum for Military Deployable Networks: Challenges and Opportunities. In: Katsikas, S., et al. Computer Security. ESORICS 2022 International Workshops. ESORICS 2022. Lecture Notes in Computer Science, vol 13785. Springer, Cham. https://doi.org/10.1007/978-3-031-25460-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25460-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25459-8

  • Online ISBN: 978-3-031-25460-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics