Skip to main content

A Hybrid Dynamic Risk Analysis Methodology for Cyber-Physical Systems

  • Conference paper
  • First Online:
Computer Security. ESORICS 2022 International Workshops (ESORICS 2022)

Abstract

Recent technological advances allow us to design and implement sophisticated infrastructures to assist users’ everyday life; technological paradigms such as Intelligent Transportation Systems (ITS) and Multi-modal Transport are excellent instances of those cases. Therefore, a systematic risk evaluation process in conjunction with proper threat identification are essential for environments like those mentioned above as they involve human safety. Threat modelling is the process of identifying and understanding threats while risk analysis is the process of identifying and analyzing potential risks. This research initially focuses on the most widely-used threat modelling and risk analysis approaches and reviewing their characteristics. Then, it presents a service-oriented dynamic risk analysis approach that focuses on Cyber-Physical Systems (CPS) by adopting threat modelling characteristics and by blending other methods and well-established sources to achieve automation in several stages. Finally, it provides the qualitative features of the proposed method and other related threat modelling and risk analysis approaches with a discussion regarding their similarities, differences, advantages and drawbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://rmt.ds.unipi.gr.

  2. 2.

    https://www.pilar-tools.com/en/tools/buy.html.

  3. 3.

    https://nvd.nist.gov/vuln/detail/CVE-2021-39627.

  4. 4.

    https://nvd.nist.gov/vuln/detail/CVE-2022-20114.

  5. 5.

    https://nvd.nist.gov/vuln/detail/CVE-2022-0908.

  6. 6.

    https://nvd.nist.gov/vuln/detail/CVE-2019-9516.

  7. 7.

    https://nvd.nist.gov/vuln/detail/CVE-2016-8740.

  8. 8.

    https://nvd.nist.gov/vuln/detail/CVE-2017-3169.

  9. 9.

    https://www.ssi.gouv.fr/entreprise/management-du-risque/la-methode-ebios-risk-manager/label-ebios-risk-manager-des-outils-pour-faciliter-le-management-du-risque-numerique.

  10. 10.

    https://objects.monarc.lu.

References

  1. The H2020 CitySCAPE Project. https://www.cityscape-project.eu

  2. BSI-Standard 200–1. Information Security Management Systems (ISMS) (2018).https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.htm

  3. BSI-Standard 200–2. IT-Grundschutz-Methodology (2018). https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.htm

  4. BSI-Standard 200–3. Risk Analysis based on IT-Grundschutz (2018). https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.htm

  5. ISO 31000:2018 Risk Management - Guidelines (2018). https://www.iso.org/standard/65694.html

  6. ISO/IEC 27000:2018 Information technology - Security techniques - Information security management systems - Overview and vocabulary (2018). https://www.iso.org/standard/73906.html

  7. ISO/IEC 27005:2018 Information Technology - Security Techniques - Information Security Risk Management (2018). https://www.iso.org/standard/75281.html

  8. IT-Grundschutz-Compendium (2021). https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.htm

  9. Common Attack Pattern Enumeration and Classification (2022). https://capec.mitre.org

  10. Common Vulnerabilities and Exposures (2022). https://cve.mitre.org

  11. Common Weakness Enumeration (2022). https://cwe.mitre.org

  12. Threat Modeling (2022). https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling

  13. Spanish Ministry of Finance & Public Administration. MAGERIT - versión 3.0.Metodología de Análisis y Gestión de Riesgos de los Sistemas de Información. Libro II - Catálogo de Elementos (2012)

    Google Scholar 

  14. Spanish Ministry of Finance & Public Administration. MAGERIT - versión 3.0.Metodología de Análisis y Gestión de Riesgos de los Sistemas de Información. Libro III - Guía de Técnicas (2012)

    Google Scholar 

  15. Spanish Ministry of Finance & Public Administration. MAGERIT-version 3.0.Methodology for Information Systems Risk Analysis and Management. Book I - The Method (2014)

    Google Scholar 

  16. Alberts, C., Behrens, S., Pethia, R., Wilson, W.: Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) Framework, Version 1.0. Tech. Rep. CMU/SEI-99-TR-017, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1999)

    Google Scholar 

  17. Alberts, C., Dorofee, A., Stevens, J., Woody, C.: Introduction to the OCTAVE Approach (2003)

    Google Scholar 

  18. Alexander, O., Belisle, M., Steele, J.: MITRE ATT &CK® for Industrial Control Systems: Design and Philosophy (2020)

    Google Scholar 

  19. ANNSI. EBIOS Risk Manager (2019). https://www.ssi.gouv.fr/uploads/2019/11/anssi-guide-ebios_risk_manager-en-v1.0.pdf

  20. ANSSI. Label EBIOS Risk Manager: Solutions Logicielles Conformes Ebios Risk Manager (2018). https://www.ssi.gouv.fr/entreprise/management-du-risque/la-methode-ebios-risk-manager/label-ebios-risk-manager-des-outils-pour-faciliter-le-management-du-risque-numerique

  21. Bojanc, R., Jerman-Blažič, B.: A quantitative model for information-security risk management. Eng. Manag. J. 25(2), 25–37 (2013)

    Article  Google Scholar 

  22. Caralli, R., Stevens, J., Young, L., Wilson, W.: Introducing OCTAVE Allegro: Improving the Information Security Risk Assessment Process. Tech. Rep. CMU/SEI-2007-TR-012, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2007). http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8419

  23. CASES. Optimised risk analysis method (2016). https://www.cases.lu/assets/docs/CASES_Monarc2016EN-web.pdf

  24. CASES MONARC. Technical Guide (2021). https://www.monarc.lu/documentation/technical-guide/

  25. Cherdantseva, Y., Burnap, P., Blyth, A., Eden, P., Jones, K., Soulsby, H., Stoddart, K.: A review of cyber security risk assessment methods for SCADA systems. Comput. Secur. 56, 1–27 (2016)

    Article  Google Scholar 

  26. ENISA. Magerit. https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/rm-ra-methods/m_magerit.html

  27. ENISA. Cloud Computing Risk Assessment (2009). https://www.enisa.europa.eu/publications/cloud-computing-risk-assessment

  28. ENISA.. Smartphones: information security risks, opportunities and recommendations for users (2010). https://www.enisa.europa.eu/publications/smartphones-information-security-risks-opportunities-and-recommendations-for-users

  29. ENISA. Smart Grid Threat Landscape and Good Practice Guide (2013). https://www.enisa.europa.eu/publications/smart-grid-threat-landscape-and-good-practice-guide

  30. ENISA. Baseline Security Recommendations for IoT (2017). https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot

  31. ENISA. ENISA good practices for security of Smart Cars (2019). https://www.enisa.europa.eu/publications/smart-cars

  32. ENISA. Port Cybersecurity - Good practices for cybersecurity in the maritime sector (2019). https://www.enisa.europa.eu/publications/port-cybersecurity-good-practices-for-cybersecurity-in-the-maritime-sector

  33. ENISA. ENISA Threat Landscape for 5G Networks Report (2020). https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-for-5g-networks

  34. ENISA. Interoperable EU Risk Management Framework (2022). https://www.enisa.europa.eu/publications/interoperable-eu-risk-management-framework

  35. ETSI. Telecommunications and internet converged services and protocols for advanced networking (tispan); methods and protocols; part 1: Method and proforma for threat, risk, vulnerability analysis (2011)

    Google Scholar 

  36. EUR-LEX. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX

  37. Hamad, M., Nolte, M., Prevelakis, V.: Towards comprehensive threat modeling for vehicles. In: The 1st Workshop on Security and Dependability of Critical Embedded Real-Time Systems, p. 31 (2016)

    Google Scholar 

  38. Hernan, S., Lambert, S., Ostwald, T., Shostack, A.: Uncover security design flaws using the STRIDE approach (2006). https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-security-design-flaws-using-the-stride-approach

  39. Jbair, M., Ahmad, B., Maple, C., Harrison, R.: Threat modelling for industrial cyber physical systems in the era of smart manufacturing. Comput. Indust. 137, 103611 (2022)

    Article  Google Scholar 

  40. Mataracioglu, T.: Comparison of PCI DSS and ISO/IEC 27001 Standards. ISACA 1 (2016). https://www.isaca.org/resources/isaca-journal/issues/2016/volume-1/comparison-of-pci-dss-and-isoiec-27001-standards#f1

  41. NIST. Security and Privacy Controls for Information Systems and Organizations. Tech. rep. (2020). https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf

  42. Petit, J., Shladover, S.E.: Potential cyberattacks on automated vehicles. IEEE Trans. Intell. Transp. Syst. 16(2), 546–556 (2015)

    Google Scholar 

  43. Scarfone, K., Mell, P.: An analysis of CVSS version 2 vulnerability scoring. In: 2009 3rd International Symposium on Empirical Software Engineering and Measurement, pp. 516–525. IEEE (2009)

    Google Scholar 

  44. Semertzis, I., Rajkumar, V.S., Ştefanov, A., Fransen, F., Palensky, P.: Quantitative risk assessment of cyber attacks on cyber-physical systems using attack graphs, pp. 1–6 (2022)

    Google Scholar 

  45. Stefan Sacala, I., Pop, E., Alexandru Moisescu, M., Dumitrache, I., Iuliana Caramihai, S., Culita, J.: Enhancing cps architectures with SOA for industry 4.0 enterprise systems. In: 2021 29th Mediterranean Conference on Control and Automation (MED), pp. 71–76 (2021)

    Google Scholar 

  46. Tucker, B.: Advancing Risk Management Capability Using the OCTAVE FORTE Process. Tech. rep., Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2020). http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=644636

  47. UcedaVélez, T., Morana, M.M.: Risk Centric Threat Modeling: Process for attack simulation and threat analysis. Wiley (2015). https://www.wiley.com/en-us/Risk+Centric+Threat+Modeling%3A+Process+for+Attack+Simulation+and+Threat+Analysis-p-9780470500965

  48. Vega, R., Arroyo, R., Yoo, S.G.: Experience in applying the analysis and risk management methodology called Magerit to identify threats and vulnerabilities in an agro-industrial company. Int. J. Appl. Eng. Res. 12, 6741–6750 (2017)

    Google Scholar 

  49. Wolf, A., Simopoulos, D., D’Avino, L., Schwaiger, P.: The PASTA threat model implementation in the IoT development life cycle. INFORMATIK 2020, 1195–1204 (2021)

    Google Scholar 

  50. Wuyts, K., Joosen, W.: Linddun privacy threat modeling: A tutorial (2015). https://lirias.kuleuven.be/retrieve/331950

  51. Wuyts, K., Van Landuyt, D., Hovsepyan, A., Joosen, W.: Effective and efficient privacy threat modeling through domain refinements. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC ’18), pp. 1175–1178. Association for Computing Machinery, New York (2018)

    Google Scholar 

  52. Xiong, W., Lagerström, R.: Threat modeling - A systematic literature review. Comput. Secur. 84, 53–69 (2019)

    Article  Google Scholar 

  53. Zeddini, B., Maachaoui, M., Inedjaren, Y.: Security threats in intelligent transportation systems and their risk levels. Risks 10(5) (2022)

    Google Scholar 

Download references

Acknowledgment

This work is a part of the CitySCAPE project. CitySCAPE has received funding from the European Union’s Horizon 2020 research & innovation programme under grant agreement no 883321. Content reflects only the authors’ view and European Commission is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Lyvas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lyvas, C. et al. (2023). A Hybrid Dynamic Risk Analysis Methodology for Cyber-Physical Systems. In: Katsikas, S., et al. Computer Security. ESORICS 2022 International Workshops. ESORICS 2022. Lecture Notes in Computer Science, vol 13785. Springer, Cham. https://doi.org/10.1007/978-3-031-25460-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25460-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25459-8

  • Online ISBN: 978-3-031-25460-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics