Skip to main content

Impact of Avatar Representation in a Virtual Reality-Based Multi-user Tunnel Fire Simulator for Training Purposes

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021)

Abstract

Virtual Reality (VR) technology is playing an increasingly important role in the field of training. The emergency domain, in particular, can benefit from various advantages of VR with respect to traditional training approaches. One of the most promising features of VR-based training is the possibility to share the virtual experience with other users. In multi-user training scenarios, the trainees have to be provided with a proper representation of both the other peers and themselves, with the aim of fostering mutual awareness, communication and cooperation. Various techniques for representing avatars in VR have been proposed in the scientific literature and employed in commercial applications. However, the impact of these techniques when deployed to multi-user scenarios for emergency training has not been extensively explored yet. In this work, two techniques for avatar representation in VR, i.e., no avatar (VR Kit only) and Full-Body reconstruction (blending of inverse kinematics and animations), are compared in the context of emergency training. Experiments were carried out in a training scenario simulating a road tunnel fire. The participants were requested to collaborate with a partner (controlled by an experimenter) to cope with the emergency, and aspects concerning perceived embodiment, immersion, and social presence were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SteamVR Home: https://store.steampowered.com/app/250820/SteamVR/.

  2. 2.

    Oculus First Steps: https://www.oculus.com/experiences/quest/1863547050392688.

  3. 3.

    Dead and Buried: https://www.oculus.com/experiences/rift/1198491230176054/.

  4. 4.

    VRChat: https://hello.vrchat.com/.

  5. 5.

    https://www.pitem-risk.eu/progetti/risk-for.

  6. 6.

    Dissonance Voice Chat: https://assetstore.unity.com/packages/tools/audio/dissonance-voice-chat-70078.

  7. 7.

    Vive wand controller: https://www.vive.com/eu/accessory/controller/.

  8. 8.

    https://assetstore.unity.com/packages/tools/animation/final-ik-14290.

  9. 9.

    HTC Vive Pro: https://www.vive.com/eu/product/vive-pro/.

  10. 10.

    http://tiny.cc/zmnnuz.

  11. 11.

    http://tiny.cc/1nnnuz.

References

  1. Çakiroğlu, Ü., Gökoğlu, S.: Development of fire safety behavioral skills via virtual reality. Comput. Educ. 133, 56–68 (2019). https://doi.org/10.1016/j.compedu.2019.01.014

    Article  Google Scholar 

  2. Andrade, M., Souto Maior, C., Silva, E., Moura, M., Lins, I.: Serious games & human reliability. The use of game-engine-based simulator data for studies of evacuation under toxic cloud scenario. In: Proceedings of Probabilistic Safety Assessment and Management (PSAM 14), pp. 1–12 (2018)

    Google Scholar 

  3. Bailenson, J.N., Yee, N., Merget, D., Schroeder, R.: The effect of behavioral realism and form realism of real-time avatar faces on verbal disclosure, nonverbal disclosure, emotion recognition, and copresence in dyadic interaction. Presence 15(4), 359–372 (2006). https://doi.org/10.1162/pres.15.4.359

    Article  Google Scholar 

  4. Benrachou, D.E., Masmoudi, M., Djekoune, O., Zenati, N., Ousmer, M.: Avatar-facilitated therapy and virtual reality: next-generation of functional rehabilitation methods. In: 2020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), pp. 298–304 (2020). https://doi.org/10.1109/CCSSP49278.2020.9151528

  5. Biocca, F., Harms, C., L. Gregg, J.: The networked minds measure of social presence: pilot test of the factor structure and concurrent validity. In: International Workshop on Presence, Philadelphia (2001)

    Google Scholar 

  6. Calandra, D., Billi, M., Lamberti, F., Sanna, A., Borchiellini, R.: Arm swinging vs treadmill: a comparison between two techniques for locomotion in virtual reality. In: Diamanti, O., Vaxman, A. (eds.) EG 2018 - Short Papers, pp. 53–56. The Eurographics Association (2018). https://doi.org/10.2312/egs.20181043

  7. Calandra, D., Lamberti, F., Migliorini, M.: On the usability of consumer locomotion techniques in serious games: comparing arm swinging, treadmills and walk-in-place. In: Proceedings of 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin), pp. 348–352 (2019). https://doi.org/10.1109/ICCE-Berlin47944.2019.8966165

  8. Calandra, D., Pratticò, F.G., Migliorini, M., Verda, V., Lamberti, F.: A multi-role, multi-user, multi-technology virtual reality-based road tunnel fire simulator for training purposes. In: Proceedings of 16th International Conference on Computer Graphics Theory and Applications (GRAPP 2021), pp. 96–105 (2021). https://doi.org/10.5220/0010319400960105

  9. Cannavò, A., Calandra, D., Pratticò, F.G., Gatteschi, V., Lamberti, F.: An evaluation testbed for locomotion in virtual reality. IEEE Trans. Visual Comput. Graphics 27(3), 1871–1889 (2021). https://doi.org/10.1109/TVCG.2020.3032440

    Article  Google Scholar 

  10. Caserman, P., Achenbach, P., Göbel, S.: Analysis of inverse kinematics solutions for full-body reconstruction in virtual reality. In: 2019 IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH), pp. 1–8 (2019). https://doi.org/10.1109/SeGAH.2019.8882429

  11. Corelli, F., Battegazzorre, E., Strada, F., Bottino, A., Cimellaro, G.P.: Assessing the usability of different virtual reality systems for firefighter training. In: Proceedings of 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (HUCAPP 2020), pp. 146–153 (2020). https://doi.org/10.5220/0008962401460153

  12. Engelbrecht, H., Lindeman, R.W., Hoermann, S.: A SWOT analysis of the field of virtual reality for firefighter training. Front. Rob. AI 6, 101 (2019). https://doi.org/10.3389/frobt.2019.00101

    Article  Google Scholar 

  13. Syed Ali Fathima, S.J., Aroma, J.: Simulation of fire safety training environment using immersive virtual reality. Int. J. Recent Technol. Eng. (IJRTE) 7(4S), 347–350 (2019)

    Google Scholar 

  14. Feng, Z., González, V.A., Amor, R., Lovreglio, R., Cabrera-Guerrero, G.: Immersive virtual reality serious games for evacuation training and research: a systematic literature review. Comput. Educ. 127, 252–266 (2018). https://doi.org/10.1016/j.compedu.2018.09.002

    Article  Google Scholar 

  15. Gonzalez-Franco, M., Peck, T.C.: Avatar embodiment. Towards a standardized questionnaire. Front. Rob. AI 5 (2018). https://doi.org/10.3389/frobt.2018.00074

  16. Gu, L., Yin, L., Li, J., Wu, D.: A real-time full-body motion capture and reconstruction system for VR basic set. In: 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), vol. 5, pp. 2087–2091 (2021). https://doi.org/10.1109/IAEAC50856.2021.9390617

  17. Kalawsky, R.S.: VRUSE - a computerised diagnostic tool: for usability evaluation of virtual/synthetic environment systems. Appl. Ergon. 30(1), 11–25 (1999). https://doi.org/10.1016/S0003-6870(98)00047-7

    Article  Google Scholar 

  18. Kasapakis, V., Dzardanova, E.: Using high fidelity avatars to enhance learning experience in virtual learning environments. In: 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 645–646 (2021). https://doi.org/10.1109/VRW52623.2021.00205

  19. Kinateder, M., et al.: Virtual reality for fire evacuation research. In: Proceedings of Federated Conference on Computer Science and Information Systems, pp. 313–321 (2014). https://doi.org/10.13140/2.1.3380.9284

  20. Kokkinara, E., Slater, M.: Measuring the effects through time of the influence of visuomotor and visuotactile synchronous stimulation on a virtual body ownership illusion. Perception 43(1), 43–58 (2014). https://doi.org/10.1068/p7545, pMID: 24689131

  21. Lamberti, F., De Lorenzis, F., Pratticò, F.G., Migliorini, M.: An immersive virtual reality platform for training CBRN operators. In: Proceedings of 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 133–137 (2021). https://doi.org/10.1109/COMPSAC51774.2021.00030

  22. Louka, M.N., Balducelli, C.: Virtual reality tools for emergency operation support and training. In: Proceedings International Conference on Emergency Management Towards Co-operation and Global Harmonization (TIEMS 2001), pp. 1–10 (06 2001)

    Google Scholar 

  23. Lovreglio, R.: Virtual and augmented reality for human behaviour in disasters: a review. In: Proceedings of Fire and Evacuation Modeling Technical Conference (FEMTC 2020), pp. 1–14 (2020)

    Google Scholar 

  24. Lu, X., Yang, Z., Xu, Z., Xiong, C.: Scenario simulation of indoor post-earthquake fire rescue based on building information model and virtual reality. Adv. Eng. Softw. 143, 102792 (2020). https://doi.org/10.1016/j.advengsoft.2020.102792

    Article  Google Scholar 

  25. Lugrin, J.L., et al.: Any “body” there? Avatar visibility effects in a virtual reality game. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 17–24 (2018). https://doi.org/10.1109/VR.2018.8446229

  26. Molina, E., Jerez, A.R., Gómez, N.P.: Avatars rendering and its effect on perceived realism in virtual reality. In: 2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), pp. 222–225 (2020). https://doi.org/10.1109/AIVR50618.2020.00046

  27. Morélot, S., Garrigou, A., Dedieu, J., N’Kaoua, B.: Virtual reality for fire safety training: influence of immersion and sense of presence on conceptual and procedural acquisition. Comput. Educ. 166, 104145 (2021). https://doi.org/10.1016/j.compedu.2021.104145

    Article  Google Scholar 

  28. Parger, M., Mueller, J.H., Schmalstieg, D., Steinberger, M.: Human upper-body inverse kinematics for increased embodiment in consumer-grade virtual reality. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, VRST 2018. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3281505.3281529

  29. Pedram, S., Palmisano, S., Skarbez, R., Perez, P., Farrelly, M.: Investigating the process of mine rescuers’ safety training with immersive virtual reality: a structural equation modelling approach. Comput. Educ. 153, 103891 (2020). https://doi.org/10.1016/j.compedu.2020.103891

    Article  Google Scholar 

  30. Pratticò, F.G., De Lorenzis, F., Calandra, D., Cannavò, A., Lamberti, F.: Exploring simulation-based virtual reality as a mock-up tool to support the design of first responders training. Appl. Sci. 11(16), 1–13 (2021). https://doi.org/10.3390/app11167527

    Article  Google Scholar 

  31. Roth, D., et al.: Avatar realism and social interaction quality in virtual reality. In: 2016 IEEE Virtual Reality (VR), pp. 277–278 (2016). https://doi.org/10.1109/VR.2016.7504761

  32. Schäfer, A., Reis, G., Stricker, D.: A survey on synchronous augmented, virtual and mixed reality remote collaboration systems (2021)

    Google Scholar 

  33. Steed, A., Frlston, S., Lopez, M.M., Drummond, J., Pan, Y., Swapp, D.: An ‘in the wild’ experiment on presence and embodiment using consumer virtual reality equipment. IEEE Trans. Visual Comput. Graphics 22(4), 1406–1414 (2016). https://doi.org/10.1109/TVCG.2016.2518135

    Article  Google Scholar 

Download references

Acknowledgements

This work has been carried out in the frame of the VR@POLITO initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Calandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Calandra, D., Pratticò, F.G., Lupini, G., Lamberti, F. (2023). Impact of Avatar Representation in a Virtual Reality-Based Multi-user Tunnel Fire Simulator for Training Purposes. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2021. Communications in Computer and Information Science, vol 1691. Springer, Cham. https://doi.org/10.1007/978-3-031-25477-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25477-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25476-5

  • Online ISBN: 978-3-031-25477-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics