Abstract
Interactive visualizations of geospatial data are commonplace in various applications and tools. The visual complexity of these visualizations ranges from simple point markers placed on the cartographic maps through visualizing connections, heatmaps, or choropleths to their combination. Designing proper visualizations of geospatial data is often tricky, and the existing approaches either provide only limited support based on pre-defined templates or require extensive programming skills. In our previous work, we introduced the Geovisto toolkit – a novel approach that blends between template editing and programmatic approaches providing tools for authoring reusable multilayered map widgets even for non-programmers. In this paper, we extend our previous work focusing on Geovisto’s application in the industry. Based on the critical assessment of two existing usage scenarios, we summarize the necessary design changes and their impact on the toolkit’s architecture and implementation. We further present a case study where Geovisto was used in the production-ready application for IoT sensor monitoring developed by Logimic, a Czech-US startup company. We conclude by discussing the advantages and limitations of our approach and outlining the future work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
Metadata required by the Node.js Package Manager when resolving the tree of package dependencies, running, building, and publishing the package.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
Logimics’ products include smart city dashboards for monitoring billions of sensors, street lighting control systems, indoor monitoring of temperature and humidity with small battery-operated wireless sensors, wireless control of industrial heaters, and many others (https://www.logimic.com/).
- 21.
- 22.
- 23.
References
Bostock, M., Heer, J.: Protovis: a graphical toolkit for visualization. IEEE Trans. Vis. Comput. Graph. 15(6), 1121–1128 (2009)
Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011). https://doi.org/10.1109/TVCG.2011.185
Degbelo, A., Kauppinen, T.: Increasing transparency through web maps. In: Companion Proceedings of the The Web Conference 2018, WWW 2018, pp. 899–904.International World Wide Web Conferences Steering Committee, Geneva (2018). https://doi.org/10.1145/3184558.3191515
Elasticsearch, B.: Maps for Geospatial Analysis (2020). https://www.elastic.co/maps, Accessed 10 Feb 2020
Gao, T., Hullman, J.R., Adar, E., Hecht, B., Diakopoulos, N.: NewsViews: an automated pipeline for creating custom geovisualizations for news. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2014, pp. 3005–3014. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2556288.2557228
Grafana Labs: Grafana: The Open Observability Platform (2020). https://grafana.com/, Accessed 10 June 2020
Grammel, L., Bennett, C., Tory, M., Storey, M.A.: A survey of visualization construction user interfaces. In: Hlawitschka, M., Weinkauf, T. (eds.) EuroVis - Short Papers. The Eurographics Association (2013). https://doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
Holten, D., Van Wijk, J.J.: Force-directed edge bundling for graph visualization. Comput. Graph. Forum 28(3), 983–990 (2009). https://doi.org/10.1111/j.1467-8659.2009.01450.x
Huang, Q., Cervone, G., Jing, D., Chang, C.: DisasterMapper: a CyberGIS framework for disaster management using social media data. In: Proceedings of the 4th International ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data, BigSpatial 2015, pp. 1–6. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2835185.2835189
Hynek, J., Kachlík, J., Rusňák, V.: Geovisto: a toolkit for generic geospatial data visualization. In: Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. SCITEPRESS - Science and Technology Publications (2021). https://doi.org/10.5220/0010260401010111
Li, X., Anselin, L., Koschinsky, J.: GeoDa web: enhancing web-based mapping with spatial analytics. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2015. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2820783.2820792
Liu, Z., Thompson, J., et al.: Data illustrator: augmenting vector design tools with lazy data binding for expressive visualization authoring. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI 2018, pp. 1–13. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3173574.3173697
Mei, H., Ma, Y., Wei, Y., Chen, W.: The design space of construction tools for information visualization: a survey. J. Visual Lang. Comput. 44, 120–132 (2018). https://doi.org/10.1016/j.jvlc.2017.10.001
Ren, D., Lee, B., Brehmer, M.: Charticulator: interactive construction of bespoke chart layouts. IEEE Trans. Vis. Comput. Graph. 25(1), 789–799 (2019)
Satyanarayan, A., Heer, J.: Lyra: an interactive visualization design environment. In: Proceedings of the 16th Eurographics Conference on Visualization, EuroVis 2014, pp. 351–360. Eurographics Association, Goslar, DEU (2014)
Satyanarayan, A., Moritz, D., Wongsuphasawat, K., Heer, J.: Vega-Lite: a grammar of interactive graphics. IEEE Trans. Vis. Comput. Graph. 23(1), 341–350 (2017)
Satyanarayan, A., Russell, R., Hoffswell, J., Heer, J.: Reactive vega: a streaming dataflow architecture for declarative interactive visualization. IEEE Trans. Vis. Comput. Graph. 22(1), 659–668 (2015)
Tableau Software, LLC.: Mapping Concepts in Tableau (2020). https://help.tableau.com/current/pro/desktop/en-us/maps_build.htm, Accessed 10 Feb 2020
Xavier, G., Dodge, S.: An exploratory visualization tool for mapping the relationships between animal movement and the environment. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Interacting with Maps, MapInteract 2014, pp. 36–42. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2677068.2677071
Acknowledgements
Jiří Hynek was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II) project “IT4Innovations excellence in science – LQ1602”. Vít Rusňák was supported by ERDF “CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence” (No. CZ.02.1.01/0.0/0.0/16_019/0000822) project. We also thank Progress Flowmon and Logimic, which provided usage scenarios and cooperated during the evaluation of the Geovisto toolkit.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Hynek, J., Rusňák, V. (2023). Towards Interactive Geovisualization Authoring Toolkit for Industry Use Cases. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2021. Communications in Computer and Information Science, vol 1691. Springer, Cham. https://doi.org/10.1007/978-3-031-25477-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-25477-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25476-5
Online ISBN: 978-3-031-25477-2
eBook Packages: Computer ScienceComputer Science (R0)