Skip to main content

Enhancing Backlight and Spotlight Images by the Retinex-Inspired Bilateral Filter SuPeR-B

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021)

Abstract

Backlight and spotlight images are pictures where the light sources generate very bright and very dark regions. The enhancement of such images has been poorly investigated and is particularly hard because it has to brighten the dark regions without over-enhance the bright ones. The solutions proposed till now generally perform multiple enhancements or segment the input image in dark and bright regions and enhance these latter with different functions. In both the cases, results are merged in a new image, that often must be smoothed to remove artifacts along the edges. This work describes SuPeR-B, a novel Retinex inspired image enhancer improving the quality of backligt and spotlight images without needing for multi-scale analysis, segmentation and smoothing. According to Retinex theory, SuPeR-B re-works the image channels separately and rescales the intensity of each pixel by a weighted average of intensities sampled from regular sub-windows. Since the rescaling factor depends both on spatial and intensity features, SuPeR-B acts like a bilateral filter. The experiments, carried out on public challenging data, demonstrate that SuPeR-B effectively improves the quality of backlight and spotlight images and also outperforms other state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    SuPeR-B code: https://github.com/StefanoMesselodi?tab=repositories,.

  2. 2.

    L-RESTORATION code: https://github.com/7thChord/backlit.

References

  1. Ackar, H., Abd Almisreb, A., Saleh, M.A.: A review on image enhancement techniques. Southeast Europe J. Soft Comput. 8(1) (2019)

    Google Scholar 

  2. Akai, M., Ueda, Y., Koga, T., Suetake, N.: A single backlit image enhancement method for improvement of visibility of dark part. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 1659–1663 (2021). https://doi.org/10.1109/ICIP42928.2021.9506526

  3. Barricelli, B.R., Casiraghi, E., Lecca, M., Plutino, A., Rizzi, A.: A cockpit of multiple measures for assessing film restoration quality. Patt. Recogn. Lett. 131, 178–184 (2020). https://doi.org/10.1016/j.patrec.2020.01.009, https://linkinghub.elsevier.com/retrieve/pii/S0167865520300076

  4. Bellotti, S., Bottaro, G., Plutino, A., Valsesia, M.: Mathematically based algorithms for film digital Restoration. In: Imagine Math 7, pp. 89–104. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42653-8_6

    Chapter  Google Scholar 

  5. Chang, H., Ng, M.K., Wang, W., Zeng, T.: Retinex image enhancement via a learned dictionary. Opt. Eng. 54(1), 013107 (2015)

    Article  Google Scholar 

  6. Finlayson, G.D., Drew, M.S., Funt, B.V.: Color constancy: generalized diagonal transforms suffice. JOSA A 11(11), 3011–3019 (1994)

    Article  Google Scholar 

  7. Fu, X., Sun, Y., LiWang, M., Huang, Y., Zhang, X.P., Ding, X.: A novel retinex based approach for image enhancement with illumination adjustment. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1190–1194. IEEE (2014)

    Google Scholar 

  8. Jiang, Z., Li, H., Liu, L., Men, A., Wang, H.: A switched view of retinex: Deep self-regularized low-light image enhancement. Neurocomputing 454, 361–372 (2021)

    Article  Google Scholar 

  9. Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Article  Google Scholar 

  10. Jobson, D.J., Rahman, Z.u., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Google Scholar 

  11. Land, E.: The Retinex. Am. Sci. 52(2), 247–264 (1964)

    Google Scholar 

  12. Land, E.H., John, McCann. J.: Lightness and Retinex theory. Optical Soc. Am. 1, 1–11 (1971)

    Google Scholar 

  13. Lecca, M.: On the von Kries model: estimation, dependence on light and device, and applications. In: Celebi, M.E., Smolka, B. (eds.) Advances in Low-Level Color Image Processing. LNCVB, vol. 11, pp. 95–135. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7584-8_4

    Chapter  Google Scholar 

  14. Lecca, M.: Color vision is a spatial process: the retinex theory. In: Bianco, S., Schettini, R., Trémeau, A., Tominaga, S. (eds.) Computational Color Imaging, pp. 26–39. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  15. Lecca, M.: Comprehensive evaluation of image enhancement for unsupervised image description and matching. IET Image Processing 14(10), 4329–4339 (December 2020). https://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2020.1129

  16. Lecca, M.: Generalized equation for real-world image enhancement by milano retinex family. J. Opt. Soc. Am. A 37(5), 849–858 (2020). https://doi.org/10.1364/JOSAA.384197. http://www.osapublishing.org/josaa/abstract.cfm?URI=josaa-37-5-849

  17. Lecca, M.: Machine colour constancy: a work in progress. Color. Technol. 137(1), 72–77 (2021)

    Article  Google Scholar 

  18. Lecca, M.: Personal-DB (Dec 2021). https://tev.fbk.eu/resources/imageenhancement

  19. Lecca, M.: A retinex inspired bilateral filter for enhancing images under difficult light conditions. In: VISIGRAPP (4: VISAPP), pp. 76–86 (2021)

    Google Scholar 

  20. Lecca, M., Messelodi, S.: SuPeR: Milano Retinex implementation exploiting a regular image grid. J. Opt. Soc. Am. A 36(8), 1423–1432 (Aug 2019). https://doi.org/10.1364/JOSAA.36.001423, http://josaa.osa.org/abstract.cfm?URI=josaa-36-8-1423

  21. Li, Z., Wu, X.: Learning-based restoration of backlit images. IEEE Trans. Image Process. 27(2), 976–986 (2018)

    Article  MATH  Google Scholar 

  22. Li, Z., Cheng, K., Wu, X.: Soft binary segmentation-based backlit image enhancement. In: 2015 IEEE 17th International Workshop on Multimedia Signal Processing (MMSP), pp. 1–5 (2015). https://doi.org/10.1109/MMSP.2015.7340808

  23. Ma, C., Zeng, S., Li, D.: A new algorithm for backlight image enhancement. In: 2020 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), pp. 840–844. IEEE (2020)

    Google Scholar 

  24. Morel, J.M., Petro, A.B., Sbert, C.: A PDE formalization of Retinex theory. IEEE Trans. Image Process. 19(11), 2825–2837 (2010)

    Article  MATH  Google Scholar 

  25. Peicheng, Z., Bo, L.: Backlit image enhancement based on illumination-reflection imaging model. In: 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE), pp. 438–443 (2021). https://doi.org/10.1109/CACRE52464.2021.9501394

  26. Petro, A.B., Sbert, C., Morel, J.M.: Multiscale retinex. Image Processing On Line pp. 71–88 (2014)

    Google Scholar 

  27. Ramirez Rivera, A., Byungyong Ryu, Chae, O.: Content-aware dark image enhancement through channel division. IEEE Trans. Image Process. 21(9), 3967–3980 (2012)

    Google Scholar 

  28. Rizzi, A., Algeri, T., Medeghini, G., Marini, D.: A proposal for contrast measure in digital images. In: CGIV 2004–2nd European Conference on Color in Graphics, Imaging, and Vision and 6th Int. Symposium on Multispectral Color Science, pp. 187–192. Aachen (2004)

    Google Scholar 

  29. Rizzi, A., Bonanomi, C.: Milano Retinex family. J. Electron. Imag. 26(3), 031207–031207 (2017)

    Article  Google Scholar 

  30. Tsai, C.M., Yeh, Z.M.: Contrast compensation by fuzzy classification and image illumination analysis for back-lit and front-lit color face images. IEEE Trans. Consum. Electron. 56(3), 1570–1578 (2010)

    Article  Google Scholar 

  31. Ueda, Y., Moriyama, D., Koga, T., Suetake, N.: Histogram specification-based image enhancement for backlit image. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 958–962. IEEE (2020)

    Google Scholar 

  32. Vonikakis, V.: Tm-died: The most difficult image enhancement dataset (Dec 2021). https://sites.google.com/site/vonikakis/datasets

  33. Wang, Q., Fu, X., Zhang, X., Ding, X.: A fusion-based method for single backlit image enhancement. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 4077–4081 (2016)

    Google Scholar 

  34. Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

    Article  Google Scholar 

  35. Wang, W., Wu, X., Yuan, X., Gao, Z.: An experiment-based review of low-light image enhancement methods. IEEE Access 8, 87884–87917 (2020)

    Article  Google Scholar 

  36. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. arXiv preprint arXiv:1808.04560 (2018)

  37. Yang, W., Wang, W., Huang, H., Wang, S., Liu, J.: Sparse gradient regularized deep retinex network for robust low-light image enhancement. IEEE Trans. Image Process. 30, 2072–2086 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Lecca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lecca, M. (2023). Enhancing Backlight and Spotlight Images by the Retinex-Inspired Bilateral Filter SuPeR-B. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2021. Communications in Computer and Information Science, vol 1691. Springer, Cham. https://doi.org/10.1007/978-3-031-25477-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25477-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25476-5

  • Online ISBN: 978-3-031-25477-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics