Abstract
Authenticating Internet of Things (IoT) devices is still a challenge, especially in deployments involving low-cost constrained nodes. The cited class of IoT devices hardly support dynamic re-keying solutions, hence being vulnerable to several attacks. To provide a viable general-purpose solution, in this paper we propose MAG-PUF, a novel lightweight authentication scheme based on the usage of unintentional magnetic emissions generated by IoT devices as Physical Unclonable Functions (PUFs). Specifically, through MAG-PUF, we collect unintentional magnetic emissions produced by the IoT devices at run-time while executing pre-defined reference functions, and we verify the match of such emissions with the profiles collected at enrolment time, providing device authentication. MAG-PUF enjoys unique flexibility, allowing the selection of an unlimited number and types of reference functions. We extensively assessed the performance of MAG-PUF through experiments on 25 Arduino devices and a set of exemplary reference functions. We obtained an authentication accuracy above 99%, hence proving the feasibility of using code-driven magnetic emissions as a lightweight, efficient, and robust PUF for IoT devices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aaronia: PBS2 EMC Probe (2021). https://tinyurl.com/2syhszbw, Accessed 31 July 2022
Afghah, F., Cambou, B., Abedini, M., Zeadally, S.: A reram physically unclonable function (reram puf)-based approach to enhance authentication security in software defined wireless networks. Int. J. Wirel. Inf. Netw. 25(2), 117–129 (2018)
Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)
Bossuet, L., Ngo, X.T., Cherif, Z., Fischer, V.: A puf based on a transient effect ring oscillator and insensitive to locking phenomenon. IEEE Trans. Emerg. Topics Comput. 2(1), 30–36 (2013)
Callan, R., Behrang, F., Zajic, A., Prvulovic, M., Orso, A.: Zero-overhead profiling via em emanations. In: Proceedings of the 25th International Symposium on Software Testing and Analysis, pp. 401–412 (2016)
Cambou, B., Orlowski, M.: Puf designed with resistive ram and ternary states. In: Proceedings of the 11th Annual Cyber and Information Security Research Conference, pp. 1–8 (2016)
Camurati, G. et al.: Screaming channels: when electromagnetic side channels meet radio transceivers. In: ACM CCS, pp. 163–177 (2018)
Chatterjee, B., Das, D., Maity, S., Sen, S.: Rf-puf: enhancing IoT security through authentication of wireless nodes using in-situ machine learning. IEEE Internet Things J. 6(1), 388–398 (2018)
Claes, M., van der Leest, V., Braeken, A.: Comparison of SRAM and FF PUF in 65 nm technology. In: Laud, P. (ed.) NordSec 2011. LNCS, vol. 7161, pp. 47–64. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29615-4_5
DeJean, G., Kirovski, D.: RF-DNA: radio-frequency certificates of authenticity. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 346–363. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_24
Delvaux, J., Verbauwhede, I.: Side channel modeling attacks on 65 nm arbiter PUFs exploiting CMOS device noise. In: 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 137–142. IEEE (2013)
Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Silicon physical random functions. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, pp. 148–160 (2002)
Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_5
Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Physical unclonable functions and public-key crypto for fpga ip protection. In: 2007 International Conference on Field Programmable Logic and Applications, pp. 189–195. IEEE (2007)
Guajardo, J.: Anti-counterfeiting, key distribution, and key storage in an ambient world via physical unclonable functions. Inf. Syst. Front. 11(1), 19–41 (2009)
Han, Y., Etigowni, S., Liu, H., Zonouz, S., Petropulu, A.: Watch me, but don’t touch me! contactless control flow monitoring via electromagnetic emanations. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1095–1108 (2017)
Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up sram state as an identifying fingerprint and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–1210 (2008)
Ibrahim, O.A., Sciancalepore, S., Di Pietro, R.: Mag-puf - authenticating iot devices via magnetic physical unclonable functions. In: Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks, WiSec 2022, pp. 290–291. ACM, New York (2022)
Ibrahim, O.A., Sciancalepore, S., Oligeri, G., Pietro, R.D.: Magneto: fingerprinting usb flash drives via unintentional magnetic emissions. ACM Trans. Embedded Comput. Syst. (TECS) 20(1), 1–26 (2020)
Islam, M.N., Kundu, S.: Enabling ic traceability via blockchain pegged to embedded puf. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 24(3), 1–23 (2019)
Khan, H.A., Sehatbakhsh, N., Nguyen, L.N., Prvulovic, M., Zajić, A.: Malware detection in embedded systems using neural network model for electromagnetic side-channel signals. J. Hardware Syst. Secur. 3(4), 305–318 (2019)
Khan, H.A., et al.: Idea: intrusion detection through electromagnetic-signal analysis for critical embedded and cyber-physical systems. IEEE Trans. Depend. Secure Comput. (2019)
Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: The butterfly puf protecting ip on every fpga. In: 2008 IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 67–70. IEEE (2008)
Maes, R.: Physically Unclonable Functions: Constructions, Properties and Applications. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41395-7
Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic pufs from flip-flops on reconfigurable devices. In: 3rd Benelux Workshop on Information and System Security (WISSec 2008), vol. 17, p. 2008 (2008)
Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A large scale characterization of ro-puf. In: 2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 94–99. IEEE (2010)
Maiti, A., Schaumont, P.: Improved ring oscillator puf: an fpga-friendly secure primitive. J. Cryptol. 24(2), 375–397 (2011)
McGrath, T., et al.: A PUF taxonomy. Appl. Phys. Rev. 6(1), 011303 (2019)
Nazari, A., Sehatbakhsh, N., Alam, M., Zajic, A., Prvulovic, M.: Eddie: em-based detection of deviations in program execution. In: Proceedings of the 44th Annual International Symposium on Computer Architecture, pp. 333–346 (2017)
Ostrovsky, R., Scafuro, A., Visconti, I., Wadia, A.: Universally composable secure computation with (malicious) physically uncloneable functions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 702–718. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_41
Sahoo, D.P., Mukhopadhyay, D., Chakraborty, R.S., Nguyen, P.H.: A multiplexer-based arbiter puf composition with enhanced reliability and security. IEEE Trans. Comput. 67(3), 403–417 (2017)
Sangodoyin, S., et al.: Remote monitoring and propagation modeling of em side-channel signals for iot device security. In: 2020 14th European Conference on Antennas and Propagation (EuCAP), pp. 1–5. IEEE (2020)
Schölkopf, B., Smola, A.J., Bach, F., et al.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT press, Cambridge (2002)
Sciancalepore, S., Oligeri, G., Piro, G., Boggia, G., Di Pietro, R.: EXCHANge: securing IoT via channel anonymity. Comput. Commun. 134, 14–29 (2019)
Sehatbakhsh, N., Alam, M., Nazari, A., Zajic, A., Prvulovic, M.: Syndrome: spectral analysis for anomaly detection on medical iot and embedded devices. In: 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 1–8. IEEE (2018)
Sehatbakhsh, N., Nazari, A., Khan, H., Zajic, A., Prvulovic, M.: Emma: Hardware/software attestation framework for embedded systems using electromagnetic signals. In: Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pp. 983–995 (2019)
Sehatbakhsh, N., Nazari, A., Zajic, A., Prvulovic, M.: Spectral profiling: observer-effect-free profiling by monitoring em emanations. In: 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1–11. IEEE (2016)
Sehatbakhsh, N., Yilmaz, B.B., Zajic, A., Prvulovic, M.: A new side-channel vulnerability on modern computers by exploiting electromagnetic emanations from the power management unit. In: 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 123–138. IEEE (2020)
Semiconductor Eng.: IoT Device Security Makes Slow Progress (2019). https://semiengineering.com/iot-device-security-makes-slow-progress/, Accessed 31 July 2022
Shamsoshoara, A., Korenda, A., Afghah, F., Zeadally, S.: A survey on physical unclonable function (PUF)-based security solutions for Internet of Things. Comput. Netw. 183, 107593 (2020)
Siow, E., et al.: Analytics for the Internet of Things: a survey. ACM Comput. Surv. (CSUR) 51(4), 1–36 (2018)
Statista: Internet of Things (IoT) and non-IoT active device connections worldwide from 2010 to 2025 (2020). https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/, Accessed 31 July 2022
Su, Y., Holleman, J., Otis, B.P.: A digital 1.6 pj/bit chip identification circuit using process variations. IEEE J. Solid-State Circ. 43(1), 69–77 (2008)
Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: 2007 44th ACM/IEEE Design Automation Conference, pp. 9–14. IEEE (2007)
Treedix: Arduino UNO (2021). https://tinyurl.com/TreedixArduinoUNO, Accessed 31 July 2022
Tuyls, P., Škoric, B., Kevenaar, T.: Security With Noisy Data: On Private Biometrics, Secure Key Storage and Anti-Counterfeiting. Springer, Heidelberg (2007). https://doi.org/10.1007/978-1-84628-984-2
Yin, C.E., Qu, G.: Temperature-aware cooperative ring oscillator puf. In: 2009 IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 36–42. IEEE (2009)
Zalivaka, S.S., Ivaniuk, A.A., Chang, C.H.: Reliable and modeling attack resistant authentication of arbiter puf in fpga implementation with trinary quadruple response. IEEE Trans. Inf. Forensics Secur. 14(4), 1109–1123 (2018)
Acknowledgements
This publication was partially supported by award GSRA6-1-0528-19046, from the QNRF-Qatar National Research Fund, a member of Qatar Foundation. The information and views set out in this publication are those of the authors and do not necessarily reflect the official opinion of the QNRF. This publication was also partially supported by the INTERSECT project, Grant No. NWA.1162.18.301, funded by Netherlands Organization for Scientific Research (NWO) and the NATO Science for Peace and Security Programme - MYP G5828 project “SeaSec: DronNets for Maritime Border and Port Security”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Ibrahim, O.A., Sciancalepore, S., Di Pietro, R. (2023). MAG-PUF: Magnetic Physical Unclonable Functions for Device Authentication in the IoT. In: Li, F., Liang, K., Lin, Z., Katsikas, S.K. (eds) Security and Privacy in Communication Networks. SecureComm 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 462. Springer, Cham. https://doi.org/10.1007/978-3-031-25538-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-25538-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25537-3
Online ISBN: 978-3-031-25538-0
eBook Packages: Computer ScienceComputer Science (R0)