Abstract
We present our latest research in learning deep sensorimotor policies for agile, vision-based quadrotor flight. We show methodologies for the successful transfer of such policies from simulation to the real world. In addition, we discuss the open research questions that still need to be answered to improve the agility and robustness of autonomous drones toward human-pilot performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A video of the results can be found here: https://youtu.be/m89bNn6RFoQ.
- 2.
A video of the results can be found here: https://youtu.be/2N_wKXQ6MXA.
- 3.
A video of the results can be found here: https://youtu.be/DGjwm5PZQT8.
References
Cieslewski, T., Kaufmann, E., Scaramuzza, D.: Rapid exploration with multi-rotors: a frontier selection method for high speed flight. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2135–2142 (2017)
Ryll, M., Ware, J., Carter, J., Roy, N.: Efficient trajectory planning for high speed flight in unknown environments. In: International Conference on Robotics and Automation (ICRA), pp. 732–738. IEEE (2019)
Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–3 (2012)
Shen, S., Mulgaonkar, Y., Michael, N., Kumar, V.: Vision-based state estimation and trajectory control towards high-speed flight with a quadrotor. In: Robotics: Science and Systems (RSS) (2013)
Falanga, D., Mueggler, E., Faessler, M., Scaramuzza, D.: Aggressive quadrotor flight through narrow gaps with onboard sensing and computing using active vision. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5774–5781 (2017)
Faessler, M., Franchi, A., Scaramuzza, D.: Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories. IEEE Robot. Autom. Lett. 3(2), 620–626 (2018)
Sun, S., Sijbers, L., Wang, X., de Visser, C.: High-speed flight of quadrotor despite loss of single rotor. IEEE Robot. Autom. Lett. 3(4), 3201–3207 (2018)
Falanga, D., Foehn, P., Lu, P., Scaramuzza, D.: PAMPC: perception-aware model predictive control for quadrotors. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018)
Nan, F., Sun, S., Foehn, P., Scaramuzza, D.: Nonlinear MPC for quadrotor fault-tolerant control. IEEE Robot. Autom. Lett. 7(2), 5047–5054 (2022)
Foehn, P., Romero, A., Scaramuzza, D.: Time-optimal planning for quadrotor waypoint flight. Sci. Robot. 6(56), eabh1221 (2021). https://robotics.sciencemag.org/content/6/56/eabh1221
Loquercio, A., Kaufmann, E., Ranftl, R., Müller, M., Koltun, V., Scaramuzza, D.: Learning high-speed flight in the wild. Sci. Robot. 6(59), eabg5810 (2021)
Müller, M., Dosovitskiy, A., Ghanem, B., Koltun, V.: Driving policy transfer via modularity and abstraction. In: Conference on Robot Learning, pp. 1–15 (2018)
Kaufmann, E. Loquercio, A., Ranftl, R., Müller, M., Koltun, V., Scaramuzza, D.: Deep drone acrobatics. In: Robotics: Science and Systems (RSS) (2020)
Kaufmann, E., Loquercio, A., Ranftl, R., Dosovitskiy, A., Koltun, V., Scaramuzza, D.: Deep drone racing: learning agile flight in dynamic environments. In: Conference on Robotics Learning (CoRL) (2018)
Kaufmann, E., et al.: Beauty and the beast: optimal methods meet learning for drone racing. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 690–696 (2019). https://doi.org/10.1109/ICRA.2019.8793631
Loquercio, A., Kaufmann, E., Ranftl, R., Dosovitskiy, A., Koltun, V., Scaramuzza, D.: Deep drone racing: from simulation to reality with domain randomization. IEEE Trans. Robot. 36(1), 1–14 (2019)
Foehn, P., et al.: Alphapilot: autonomous drone racing. In: Robotics: Science and System (RSS) (2022). https://link.springer.com/article/10.1007/s11370-018-00271-6
Haarnoja, T., Hartikainen, K., Abbeel, P., Levine, S.: Latent space policies for hierarchical reinforcement learning. In: International Conference on Machine Learning, pp. 1851–1860. PMLR (2018)
Peng, X. B., Coumans, E., Zhang, T., Lee, T.W., Tan, J., Levine, S.: Learning agile robotic locomotion skills by imitating animals. In: Robotics: Science and Systems (RSS) (2020)
Smith, L., Kew, J.C., Peng, X.B., Ha, S., Tan, J., Levine, S.: Legged robots that keep on learning: fine-tuning locomotion policies in the real world. arXiv preprint arXiv:2110.05457 (2021)
Kumar, A., Fu, Z., Pathak, D., Malik, J.: RMA: rapid motor adaptation for legged robots. arXiv preprint arXiv:2107.04034 (2021)
Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)
Spica, R., Falanga, D., Cristofalo, E., Montijano, E., Scaramuzza, D., Schwager, M.: A real-time game theoretic planner for autonomous two-player drone racing. In: Robotics: Science and Systems (RSS) (2018)
Baker, B., et al.: Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528 (2019)
Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354–359 (2017)
Acknowledgments
This work was supported by the National Centre of Competence in Research (NCCR) Robotics through the Swiss National Science Foundation (SNSF) and the European Union’s Horizon 2020 Research and Innovatifon Program under grant agreement No. 871479 (AERIAL-CORE) and the European Research Council (ERC) under grant agreement No. 864042 (AGILEFLIGHT).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Scaramuzza, D., Kaufmann, E. (2023). Learning Agile, Vision-Based Drone Flight: From Simulation to Reality. In: Billard, A., Asfour, T., Khatib, O. (eds) Robotics Research. ISRR 2022. Springer Proceedings in Advanced Robotics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-25555-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-25555-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25554-0
Online ISBN: 978-3-031-25555-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)