Skip to main content

Reference-Free Learning Bipedal Motor Skills via Assistive Force Curricula

  • Conference paper
  • First Online:
Robotics Research (ISRR 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 27))

Included in the following conference series:

Abstract

Reinforcement learning recently shows great progress on legged robots, while bipedal robots in high dimensions but narrow solution space are still challenging to learn. The typical methods introduce the reference joints motion to guide the learning process; however, obtaining a high-quality reference trajectory is nontrivial, and imitation suffers from the local minimum. For general reference-free scenarios, the bipedal robot is discouraged by the early termination and biased sample collection. Inspired by the assistive learning commonly shown in biped animals, we introduce the assistive force to aid the learning process without the requirement of reference trajectories. The learned assistant could be a curricula to lead motor skills learning and is eliminated in the end to shape the learned motion to be plausible. We analyze the assistive system and verify its effectiveness in multiple challenging bipedal skills (Videos and supplementary materials: https://fanshi14.github.io/me/isrr22.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boston dynamics atlas (2022). https://www.bostondynamics.com/atlas. Accessed 01 May 2022

  2. Kondo kxr robot (2022). https://kondo-robot.com/product-category/robot/kxrseries. Accessed 01 May 2022

  3. Asano, Y., Okada, K., Inaba, M.: Design principles of a human mimetic humanoid: humanoid platform to study human intelligence and internal body system. Sci. Robot. 2(13), eaaq0899 (2017)

    Google Scholar 

  4. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48 (2009)

    Google Scholar 

  5. Chapman, D., Daoust, T., Ormos, A., Lewis, J.: Weightshift: Accelerating animation at framestore with physics (2020)

    Google Scholar 

  6. Chen, S., Zhang, B., Mueller, M.W., Rai, A., Sreenath, K.: Learning torque control for quadrupedal locomotion. arXiv preprint arXiv:2203.05194 (2022)

  7. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of Honda humanoid robot. In: Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), vol. 2, pp. 1321–1326. IEEE (1998)

    Google Scholar 

  8. Hwangbo, J., et al.: Learning agile and dynamic motor skills for legged robots. Sci. Robot. 4(26) (2019)

    Google Scholar 

  9. Hwangbo, J., Lee, J., Hutter, M.: Per-contact iteration method for solving contact dynamics. IEEE Robot. Autom. Lett. 3(2), 895–902 (2018)

    Article  Google Scholar 

  10. Kim, N.H., Ling, H.Y., Xie, Z., van de Panne, M.: Flexible motion optimization with modulated assistive forces. Proc. ACM Comput. Graph. Interact. Tech. 4(3), 1–25 (2021)

    Article  Google Scholar 

  11. Kojima, K., et al.: Development of life-sized high-power humanoid robot Jaxon for real-world use. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 838–843. IEEE (2015)

    Google Scholar 

  12. Kojio, Y., et al.: Unified balance control for biped robots including modification of footsteps with angular momentum and falling detection based on capturability. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 497–504. IEEE (2019)

    Google Scholar 

  13. Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning quadrupedal locomotion over challenging terrain. Sci. Robot. 5(47) (2020). https://robotics.sciencemag.org/content/5/47/eabc5986

  14. Li, Z., et al.: Reinforcement learning for robust parameterized locomotion control of bipedal robots. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 2811–2817. IEEE (2021)

    Google Scholar 

  15. Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning robust perceptive locomotion for quadrupedal robots in the wild. Sci. Robot. 7(62), eabk2822 (2022)

    Google Scholar 

  16. Mordatch, I., Todorov, E., Popović, Z.: Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. (TOG) 31(4), 1–8 (2012)

    Article  Google Scholar 

  17. Natale, L., Bartolozzi, C., Pucci, D., Wykowska, A., Metta, G.: iCub: the not-yet-finished story of building a robot child. Sci. Robot. 2(13), eaaq1026 (2017)

    Google Scholar 

  18. Panne, M.v.d., Lamouret, A.: Guided optimization for balanced locomotion. In: Terzopoulos, D., Thalmann, D. (eds) Computer Animation and Simulation ’95, pp. 165–177. Springer, Cham (1995).https://doi.org/10.1007/978-3-7091-9435-5_13

  19. Peng, X.B., Abbeel, P., Levine, S., van de Panne, M.: Deepmimic: example-guided deep reinforcement learning of physics-based character skills. ACM Trans. Graph. (TOG) 37(4), 1–14 (2018)

    Google Scholar 

  20. Pinto, L., Davidson, J., Sukthankar, R., Gupta, A.: Robust adversarial reinforcement learning. In: International Conference on Machine Learning, pp. 2817–2826. PMLR (2017)

    Google Scholar 

  21. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  22. Shi, F., Anzai, T., Kojio, Y., Okada, K., Inaba, M.: Learning agile hybrid whole-body motor skills for thruster-aided humanoid robots. In: 2021 IEEE International Conference on Intelligent Robots and Systems (IROS) (2022)

    Google Scholar 

  23. Shi, F., et al.: Circus anymal: a quadruped learning dexterous manipulation with its limbs. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 2316–2323 (2021)

    Google Scholar 

  24. Siekmann, J., Godse, Y., Fern, A., Hurst, J.: Sim-to-real learning of all common bipedal gaits via periodic reward composition. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 7309–7315 (2021)

    Google Scholar 

  25. Siekmann, J., Green, K., Warila, J., Fern, A., Hurst, J.: Blind bipedal stair traversal via sim-to-real reinforcement learning. Robot. Sci. Syst. (RSS) (2021)

    Google Scholar 

  26. Siekmann, J., et al.: Learning memory-based control for human-scale bipedal locomotion. Robot. Sci. Syst. (RSS) (2020)

    Google Scholar 

  27. Starke, S., Zhao, Y., Komura, T., Zaman, K.: Local motion phases for learning multi-contact character movements. ACM Trans. Graph. (TOG) 39(4), 1–54 (2020)

    Article  Google Scholar 

  28. Thananjeyan, B., et al.: Recovery RL: safe reinforcement learning with learned recovery zones. IEEE Robot. Autom. Lett. 6(3), 4915–4922 (2021)

    Article  Google Scholar 

  29. Tidd, B., Hudson, N., Cosgun, A.: Guided curriculum learning for walking over complex terrain. arXiv preprint arXiv:2010.03848 (2020)

  30. Wrotek, P., Jenkins, O.C., McGuire, M.: Dynamo: dynamic, data-driven character control with adjustable balance. In: Proceedings of the 2006 ACM SIGGRAPH symposium on Videogames, pp. 61–70 (2006)

    Google Scholar 

  31. Xie, Z., Clary, P., Dao, J., Morais, P., Hurst, J., Panne, M.: Learning locomotion skills for cassie: iterative design and sim-to-real. In: Conference on Robot Learning, pp. 317–329. PMLR (2020)

    Google Scholar 

  32. Xu, K., Verma, S., Finn, C., Levine, S.: Continual learning of control primitives: skill discovery via reset-games. Adv. Neural. Inf. Process. Syst. 33, 4999–5010 (2020)

    Google Scholar 

  33. Yang, T.Y., Zhang, T., Luu, L., Ha, S., Tan, J., Yu, W.: Safe reinforcement learning for legged locomotion. arXiv preprint arXiv:2203.02638 (2022)

  34. Yu, W., Turk, G., Liu, C.K.: Learning symmetric and low-energy locomotion. ACM Trans. Graph. (TOG) 37(4), 1–12 (2018)

    Article  Google Scholar 

  35. Yuan, Y., Kitani, K.: Residual force control for agile human behavior imitation and extended motion synthesis. Adv. Neural. Inf. Process. Syst. 33, 21763–21774 (2020)

    Google Scholar 

  36. Zhang, K., Hu, B., Basar, T.: On the stability and convergence of robust adversarial reinforcement learning: a case study on linear quadratic systems. Adv. Neural. Inf. Process. Syst. 33, 22056–22068 (2020)

    Google Scholar 

Download references

Acknowledgment

We would like to thank Prof. Marco Hutter and Dr. Kaiqing Zhang for their insightful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, F. et al. (2023). Reference-Free Learning Bipedal Motor Skills via Assistive Force Curricula. In: Billard, A., Asfour, T., Khatib, O. (eds) Robotics Research. ISRR 2022. Springer Proceedings in Advanced Robotics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-25555-7_21

Download citation

Publish with us

Policies and ethics