Abstract
Generation of robust trajectories for legged robots remains a challenging task due to the underlying nonlinear, hybrid and intrinsically unstable dynamics which needs to be stabilized through limited contact forces. Furthermore, disturbances arising from unmodelled contact interactions with the environment and model mismatches can hinder the quality of the planned trajectories leading to unsafe motions. In this work, we propose to use stochastic trajectory optimization for generating robust centroidal momentum trajectories to account for additive uncertainties on the model dynamics and parametric uncertainties on contact locations. Through an alternation between the robust centroidal and whole-body trajectory optimizations, we generate robust momentum trajectories while being consistent with the whole-body dynamics. We perform an extensive set of simulations subject to different uncertainties on a quadruped robot showing that our stochastic trajectory optimization problem reduces the amount of foot slippage for different gaits while achieving better performance over deterministic planning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Mordatch, I., Todorov, E., Popović, Z.: Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. 31(4) (2012)
Posa, M., Cantu, C., Tedrake, R.: A direct method for trajectory optimization of rigid bodies through contact. Int. J. Robot. Res. 33(1), 69–81 (2014)
Winkler, A.W., Bellicoso, C.D., Hutter, M., Buchli, J.: Gait and trajectory optimization for legged systems through phase-based end-effector parameterization. IEEE Robot. Autom. Lett. 3(3), 1560–1567 (2018)
Carpentier, J., Wieber, P.B.: Recent progress in legged robots locomotion control. Curr. Robot. Rep. 2(3), 231–238 (2021)
Sleiman, J.P., Farshidian, F., Minniti, M.V., Hutter, M.: A unified MPC framework for whole-body dynamic locomotion and manipulation. IEEE Robot. Autom. Lett. 6(3), 4688–4695 (2021)
Meduri, A., Shah, P., Viereck, J., Khadiv, M., Havoutis, I., Righetti, L.: BiConMP: a nonlinear model predictive control framework for whole body motion planning. CoRR abs/2201.07601 (2022). https://arxiv.org/abs/2201.07601
Villa, N.A., Wieber, P.B.: Model predictive control of biped walking with bounded uncertainties. In: 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pp. 836–841 (2017)
Gazar, A., Khadiv, M., Prete, A.D., Righetti, L.: Stochastic and robust MPC for bipedal locomotion: a comparative study on robustness and performance. In: 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids), pp. 61–68 (2021)
Yeganegi, M.H., Khadiv, M., Moosavian, S.A.A., Zhu, J.J., Del Prete, A., Righetti, L.: Robust humanoid locomotion using trajectory optimization and sample-efficient learning. In: 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), pp. 170–177 (2019)
Tassa, Y., Erez, T., Todorov, E.: Synthesis and stabilization of complex behaviors through online trajectory optimization. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4906–4913 (2012)
Mastalli, C., et al.: Crocoddyl: an efficient and versatile framework for multi-contact optimal control. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 2536–2542 (2020)
Mordatch, I., Lowrey, K., Todorov, E.: Ensemble-CIO: full-body dynamic motion planning that transfers to physical humanoids. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5307–5314 (2015)
Hammoud, B., Khadiv, M., Righetti, L.: Impedance optimization for uncertain contact interactions through risk sensitive optimal control. IEEE Robot. Autom. Lett. 6(3), 4766–4773 (2021)
Drnach, L., Zhang, J.Z., Zhao, Y.: Mediating between contact feasibility and robustness of trajectory optimization through chance complementarity constraints. Front. Robot. AI 8 (2021)
Orin, D.E., Goswami, A.: Centroidal momentum matrix of a humanoid robot: structure and properties. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 653–659 (2008)
Wieber, P.-B., Tedrake, R., Kuindersma, S.: Modeling and control of legged robots. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1203–1234. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_48
Herzog, A., Schaal, S., Righetti, L.: Structured contact force optimization for Kino-dynamic motion generation. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2703–2710 (2016)
Brasseur, C., Sherikov, A., Collette, C., Dimitrov, D., Wieber, P.B.: A robust linear MPC approach to online generation of 3D biped walking motion. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 595–601 (2015)
Dai, H., Tedrake, R.: Planning robust walking motion on uneven terrain via convex optimization. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 579–586 (2016)
Budhiraja, R., Carpentier, J., Mansard, N.: Dynamics consensus between centroidal and whole-body models for locomotion of legged robots. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 6727–6733 (2019)
Grimminger, F., et al.: An open torque-controlled modular robot architecture for legged locomotion research. IEEE Robot. Autom. Lett. 5(2) (2020)
Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games, robotics and machine learning (2016–2021). http://pybullet.org
Ono, M., Blackmore, L., Williams, B.C.: Chance constrained finite horizon optimal control with nonconvex constraints. In: Proceedings of the 2010 American Control Conference, pp. 1145–1152 (2010)
Ma, Y., Vichik, S., Borrelli, F.: Fast stochastic MPC with optimal risk allocation applied to building control systems. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 7559–7564 (2012)
Zhu, H., Alonso-Mora, J.: Chance-constrained collision avoidance for MAVs in dynamic environments. IEEE Robot. Autom. Lett. 4(2), 776–783 (2019)
Lew, T., Bonalli, R., Pavone, M.: Chance-constrained sequential convex programming for robust trajectory optimization. In: 2020 European Control Conference (ECC) (2020)
Plancher, B., Manchester, Z., Kuindersma, S.: Constrained unscented dynamic programming. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5674–5680 (2017)
Nakka, Y.K., Chung, S.J.: Trajectory optimization for chance-constrained nonlinear stochastic systems. In: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 3811–3818 (2019)
Bonalli, R., Cauligi, A., Bylard, A., Pavone, M.: Gusto: guaranteed sequential trajectory optimization via sequential convex programming. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 6741–6747 (2019)
Schulman, J., et al.: Motion planning with sequential convex optimization and convex collision checking. Int. J. Robot. Res. 33, 1251–1270 (2014)
Bradbury, J., et al.: JAX: composable transformations of Python+NumPy programs. http://github.com/google/jax
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 5539 KB)
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gazar, A., Khadiv, M., Kleff, S., Del Prete, A., Righetti, L. (2023). Nonlinear Stochastic Trajectory Optimization for Centroidal Momentum Motion Generation of Legged Robots. In: Billard, A., Asfour, T., Khatib, O. (eds) Robotics Research. ISRR 2022. Springer Proceedings in Advanced Robotics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-25555-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-25555-7_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25554-0
Online ISBN: 978-3-031-25555-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)