Skip to main content

Nonlinear Stochastic Trajectory Optimization for Centroidal Momentum Motion Generation of Legged Robots

  • Conference paper
  • First Online:
Robotics Research (ISRR 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 27))

Included in the following conference series:

  • 1654 Accesses

Abstract

Generation of robust trajectories for legged robots remains a challenging task due to the underlying nonlinear, hybrid and intrinsically unstable dynamics which needs to be stabilized through limited contact forces. Furthermore, disturbances arising from unmodelled contact interactions with the environment and model mismatches can hinder the quality of the planned trajectories leading to unsafe motions. In this work, we propose to use stochastic trajectory optimization for generating robust centroidal momentum trajectories to account for additive uncertainties on the model dynamics and parametric uncertainties on contact locations. Through an alternation between the robust centroidal and whole-body trajectory optimizations, we generate robust momentum trajectories while being consistent with the whole-body dynamics. We perform an extensive set of simulations subject to different uncertainties on a quadruped robot showing that our stochastic trajectory optimization problem reduces the amount of foot slippage for different gaits while achieving better performance over deterministic planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    submission video.

References

  1. Mordatch, I., Todorov, E., Popović, Z.: Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. 31(4) (2012)

    Google Scholar 

  2. Posa, M., Cantu, C., Tedrake, R.: A direct method for trajectory optimization of rigid bodies through contact. Int. J. Robot. Res. 33(1), 69–81 (2014)

    Article  Google Scholar 

  3. Winkler, A.W., Bellicoso, C.D., Hutter, M., Buchli, J.: Gait and trajectory optimization for legged systems through phase-based end-effector parameterization. IEEE Robot. Autom. Lett. 3(3), 1560–1567 (2018)

    Article  Google Scholar 

  4. Carpentier, J., Wieber, P.B.: Recent progress in legged robots locomotion control. Curr. Robot. Rep. 2(3), 231–238 (2021)

    Article  Google Scholar 

  5. Sleiman, J.P., Farshidian, F., Minniti, M.V., Hutter, M.: A unified MPC framework for whole-body dynamic locomotion and manipulation. IEEE Robot. Autom. Lett. 6(3), 4688–4695 (2021)

    Article  Google Scholar 

  6. Meduri, A., Shah, P., Viereck, J., Khadiv, M., Havoutis, I., Righetti, L.: BiConMP: a nonlinear model predictive control framework for whole body motion planning. CoRR abs/2201.07601 (2022). https://arxiv.org/abs/2201.07601

  7. Villa, N.A., Wieber, P.B.: Model predictive control of biped walking with bounded uncertainties. In: 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pp. 836–841 (2017)

    Google Scholar 

  8. Gazar, A., Khadiv, M., Prete, A.D., Righetti, L.: Stochastic and robust MPC for bipedal locomotion: a comparative study on robustness and performance. In: 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids), pp. 61–68 (2021)

    Google Scholar 

  9. Yeganegi, M.H., Khadiv, M., Moosavian, S.A.A., Zhu, J.J., Del Prete, A., Righetti, L.: Robust humanoid locomotion using trajectory optimization and sample-efficient learning. In: 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), pp. 170–177 (2019)

    Google Scholar 

  10. Tassa, Y., Erez, T., Todorov, E.: Synthesis and stabilization of complex behaviors through online trajectory optimization. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4906–4913 (2012)

    Google Scholar 

  11. Mastalli, C., et al.: Crocoddyl: an efficient and versatile framework for multi-contact optimal control. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 2536–2542 (2020)

    Google Scholar 

  12. Mordatch, I., Lowrey, K., Todorov, E.: Ensemble-CIO: full-body dynamic motion planning that transfers to physical humanoids. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5307–5314 (2015)

    Google Scholar 

  13. Hammoud, B., Khadiv, M., Righetti, L.: Impedance optimization for uncertain contact interactions through risk sensitive optimal control. IEEE Robot. Autom. Lett. 6(3), 4766–4773 (2021)

    Article  Google Scholar 

  14. Drnach, L., Zhang, J.Z., Zhao, Y.: Mediating between contact feasibility and robustness of trajectory optimization through chance complementarity constraints. Front. Robot. AI 8 (2021)

    Google Scholar 

  15. Orin, D.E., Goswami, A.: Centroidal momentum matrix of a humanoid robot: structure and properties. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 653–659 (2008)

    Google Scholar 

  16. Wieber, P.-B., Tedrake, R., Kuindersma, S.: Modeling and control of legged robots. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1203–1234. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_48

    Chapter  Google Scholar 

  17. Herzog, A., Schaal, S., Righetti, L.: Structured contact force optimization for Kino-dynamic motion generation. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2703–2710 (2016)

    Google Scholar 

  18. Brasseur, C., Sherikov, A., Collette, C., Dimitrov, D., Wieber, P.B.: A robust linear MPC approach to online generation of 3D biped walking motion. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 595–601 (2015)

    Google Scholar 

  19. Dai, H., Tedrake, R.: Planning robust walking motion on uneven terrain via convex optimization. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 579–586 (2016)

    Google Scholar 

  20. Budhiraja, R., Carpentier, J., Mansard, N.: Dynamics consensus between centroidal and whole-body models for locomotion of legged robots. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 6727–6733 (2019)

    Google Scholar 

  21. Grimminger, F., et al.: An open torque-controlled modular robot architecture for legged locomotion research. IEEE Robot. Autom. Lett. 5(2) (2020)

    Google Scholar 

  22. Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games, robotics and machine learning (2016–2021). http://pybullet.org

  23. Ono, M., Blackmore, L., Williams, B.C.: Chance constrained finite horizon optimal control with nonconvex constraints. In: Proceedings of the 2010 American Control Conference, pp. 1145–1152 (2010)

    Google Scholar 

  24. Ma, Y., Vichik, S., Borrelli, F.: Fast stochastic MPC with optimal risk allocation applied to building control systems. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 7559–7564 (2012)

    Google Scholar 

  25. Zhu, H., Alonso-Mora, J.: Chance-constrained collision avoidance for MAVs in dynamic environments. IEEE Robot. Autom. Lett. 4(2), 776–783 (2019)

    Article  Google Scholar 

  26. Lew, T., Bonalli, R., Pavone, M.: Chance-constrained sequential convex programming for robust trajectory optimization. In: 2020 European Control Conference (ECC) (2020)

    Google Scholar 

  27. Plancher, B., Manchester, Z., Kuindersma, S.: Constrained unscented dynamic programming. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5674–5680 (2017)

    Google Scholar 

  28. Nakka, Y.K., Chung, S.J.: Trajectory optimization for chance-constrained nonlinear stochastic systems. In: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 3811–3818 (2019)

    Google Scholar 

  29. Bonalli, R., Cauligi, A., Bylard, A., Pavone, M.: Gusto: guaranteed sequential trajectory optimization via sequential convex programming. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 6741–6747 (2019)

    Google Scholar 

  30. Schulman, J., et al.: Motion planning with sequential convex optimization and convex collision checking. Int. J. Robot. Res. 33, 1251–1270 (2014)

    Article  Google Scholar 

  31. Bradbury, J., et al.: JAX: composable transformations of Python+NumPy programs. http://github.com/google/jax

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Gazar .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 5539 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gazar, A., Khadiv, M., Kleff, S., Del Prete, A., Righetti, L. (2023). Nonlinear Stochastic Trajectory Optimization for Centroidal Momentum Motion Generation of Legged Robots. In: Billard, A., Asfour, T., Khatib, O. (eds) Robotics Research. ISRR 2022. Springer Proceedings in Advanced Robotics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-25555-7_29

Download citation

Publish with us

Policies and ethics