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Abstract. Autonomous agents operating in perceptually aliased envi-
ronments should ideally be able to solve the data association problem.
Yet, planning for future actions while considering this problem is not
trivial. State of the art approaches therefore use multi-modal hypotheses
to represent the states of the agent and of the environment. However,
explicitly considering all possible data associations, the number of hy-
potheses grows exponentially with the planning horizon. As such, the
corresponding Belief Space Planning problem quickly becomes unsolv-
able. Moreover, under hard computational budget constraints, some non-
negligible hypotheses must eventually be pruned in both planning and
inference. Nevertheless, the two processes are generally treated separately
and the effect of budget constraints in one process over the other was
barely studied. We present a computationally efficient method to solve
the nonmyopic Belief Space Planning problem while reasoning about
data association. Moreover, we rigorously analyze the effects of budget
constraints in both inference and planning.
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1 Introduction

Intelligent autonomous agents and robots are expected to operate reliably and ef-
ficiently under different sources of uncertainty. There are various possible reasons
for such uncertainty, including noisy measurements; imprecise actions; and dy-
namic environments in which some events are unpredictable. In these settings,
autonomous agents are required to reason over high-dimensional probabilistic
states known as beliefs. A truly autonomous agent should be able to perform
both inference, i.e. maintain a belief over the high-dimensional state space given
available information, and decision making under uncertainty. The latter is also
known as the Belief Space Planning (BSP) problem, where the agent should
autonomously determine its next best actions while reasoning about future be-
lief evolution. However, both inference and BSP are computationally expensive
and practically infeasible in real-world autonomous systems where the agent is
required to operate in real time using inexpensive hardware.

* This work was partially supported by US NSF/US-Israel BSF.
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In real-world scenarios, an autonomous agent should also be resilient to the
problem of ambiguous measurements. These ambiguities occur when a certain
observation has more than one possible interpretation. Some examples include
the slip/grip behavior of odometry measurements; the loop closure problem in
visual Simultaneous Localization and Mapping (SLAM); and unresolved data
association. The latter is defined as the process of associating uncertain mea-
surements to known tracks, e.g. determine if an observation corresponds to a
specific landmark within a given map. Most existing inference and BSP algo-
rithms assume data association to be given and perfect, i.e. assume a single
hypothesis represented by a uni-modal state and map estimates. Yet, in percep-
tually aliased environments, this assumption is not reasonable and could lead to
catastrophic results. Therefore, it is crucial to reason about data association, in
both inference and planning, while also considering other sources of uncertainty.

Explicitly reasoning about data association, the number of hypotheses grows
exponentially with time. As such, when considering real time operation using
inexpensive hardware, hard computational constraints are often required, e.g.
bounding the number of supported hypotheses. State of the art inference and
planning approaches therefore use different heuristics, e.g. pruning and merging,
to relax the computational complexity. However, this loss of information incurs
loss in solution quality and there are usually no performance guarantees. More-
over, inference and planning are commonly treated separately and it is unclear
how budget constraints in one process affect another.

In this work we extend our presented approach in [I8] to a nonmyopic setting.
Specifically, we handle the exponential growth of hypotheses in BSP by solving
a simplified problem while providing performance guarantees. To that end, we
analyze for the first time, the construction of a belief tree within planning given
a mixture belief, e.g. Gaussian Mixture Models (GMM). We further show how
to utilize the skeleton of such belief tree to reduce the computational complexity
in BSP. Crucially, this paper thoroughly studies, for the first time, the impacts
of hard budget constraints in either planning and/or inference.

2 Related Work

Several approaches were recently proposed to ensure efficient and reliable opera-
tion in ambiguous environments. Known as robust perception, these approaches
typically maintain probabilistic data association and hypothesis tracking.

A good inference mechanism should handle false data association made by
front-end algorithms and be computationally efficient. The authors of [I7] re-
cently suggested to re-use hypotheses’ weights from previous steps to reduce
computational complexity and improve current-time hypotheses pruning. Con-
vex relaxation approaches over graphs were proposed in [2[I4] to capture percep-
tual aliasing and find the maximal subset of internally coherent measurements,
i.e. correct data association. The max-mixture model was presented in [15] to
allow fast maximum-likelihood inference on factor graphs [I3] that contain arbi-
trarily complex probability distributions such as the slip/grip multi modal prob-
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lem. The authors of [8[9] used factor graphs with an expectation-maximization
approach to efficiently infer initial relative poses and solve a multi robot data
association problem. In [22] the topological structure of a factor graph was mod-
ified during optimization to discard false positive loop closures. The Bayes tree
algorithm [I1] was extended in [6LI0] to explicitly incorporate multi-modal mea-
surements within the graph and generate multi-hypothesis outputs. These works,
however, were only developed for the purpose of inference, i.e. without planning.

Ambiguous data association was also considered in planning. In [I] a GMM
was used to model prior beliefs representing different data association hypothe-
ses. However, the authors did not reason about ambiguous data association
within future beliefs (owing to future observations), i.e. they assumed that it is
solved and perfect in planning. In [I6] the authors introduced DA-BSP where, for
the first time, reasoning about future data association hypotheses was incorpo-
rated within a BSP framework. The ARAS framework proposed in [7] leveraged
the graphical model presented in [6] to reason about ambiguous data association
in future beliefs. All of these approaches handled the exponential growth in the
number of hypotheses by either pruning or merging. The first work to also pro-
vide performance guarantees on the loss in solution quality was presented in [I§].
Yet, the authors only considered a myopic setting.

The notion of simplification was introduced in [4], where, the authors formu-
lated the loss in solution quality in BSP problems via bounds over the objective
function. However, they only considered the Gaussian case and a maximum like-
lihood assumption. The authors of [24] used bounds as a function of simplified
beliefs to reduce the computational complexity in nonmyopic BSP problems
with general belief distributions. In [23] they incorporated this concept within
a Monte Carlo Tree Search (MCTS) planning framework, i.e. without assuming
that the belief tree is given, which is complimentary to our approach. Yet, they
did not handle ambiguous data association nor budget constraints aspects.

3 Background and Notations

In this section we review some basic concepts from estimation theory and BSP
which we will use in the following sections.

3.1 Inference

Consider an autonomous agent operating in a partially known or pre-mapped
environment containing similar landmarks or scenes. The agent acquires ob-
servations and tries to infer random variables of interest that are application
dependent while reasoning about data association.

We denote the agent’s state at time instant k by . Let Z;, £ {Zk1s s Zlomy }
denote the set of all ny measurements and let uj; denote the agent’s action. Z7.x
and wg.x—1 denote all observations and actions up to time k, respectively. The
motion and observation models are given by

Tpr = f (@ up,wi) oz = h (2,2t o) (1)
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where !

motion and measurement distributions, respectively.

Given nj observations, the data association realization vector is denoted by
Br € N™ . Elements in f; are associated according to the given observation
model and each element, e.g. landmark, is given a unique label. A specific data
association hypothesis is thus given by a specific set j of associations up to and
including time & and is denoted as 3],

At each time step the agent maintains a posterior belief over both continuous
and discrete variables given by

bk, Brk) £ Pk, Bkl 20k, vo:k—1) = P (2k, B | H) (2)

where Hy, £ {Z1.,u0:k—1} represents history. Using the chain rule, the belief
becomes a mixture and can be written as a linear combination of | M} | hypotheses

b= > B (wnlBy He) B (Bl H). (3)

JEMy

is a landmark pose and wy, and vy are noise terms, sampled from known

b wj,
where bi is a conditional belief, with some general distribution, and wfg is the
associated weight. Therefore, M} is a set of maintained weighted conditional
beliefs, representing different data association hypotheses. In this work, we in-
terchangeably refer to each b), as both a hypothesis and a component.

Each conditional belief hypothesis bi in @) can be efficiently calculated by
maximum a posteriori inference, e.g. as presented in [I1] for the Gaussian case.
Nevertheless, our formulation and approach also applies to a non-parametric
setting. Each component weight w] is calculating by marginalizing over the
state space and applying the Bayes rule (as developed in [I6L[18]).

Reasoning about data association, without any computational constraints,
the number of considered hypotheses grows exponentially with time. In general,
such belief is a function of by, = ¥y (bp—1, uk—1, Zx). However, under hard compu-
tational constraints, the number of hypotheses is bounded by C € N. Therefore,
the belief in each time step is a function of

b,]f :¢g (bk—luuk—lazk7c)7 (4)

where ¢¢ contains some heuristic function A"/ such that |M ;f | <C.

3.2 DA-BSP

Given a posterior belief (@) and a set of candidate action sequences U the goal
of BSP is to find the optimal action sequence that would minimize/maximize
a certain objective function. We note that while in this paper we consider, for
simplicity, action sequences, our approach is applicable also to policies.

Reasoning about data association in planning, a user defined objective func-
tion J can be written as

J (b, tpesn—1) =  E [ B [Zc(bmmumn—l)H , ()

B+1)+ | Zk+1)+1Br+1)+ ot
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(a) belief tree (b) exponential growth of hypotheses

Fig.1: (a) A belief tree constructed during planning. Each node represents a posterior belief (@); The number of
belief components grows exponentially along the highlighted path as presented in (b).

where B41)+ 2 Bri1kanN Z(k+1)+ 2 Zii1ken and ¢ (+) denotes a cost func-
tion. The expectation is taken with respect to both future data association re-
alizations and observations. The optimal action sequence uj.,, y_; is defined as

Ujepy y—1 = ArgminJ (bp, Ukt n—1) - (6)
u

To solve ([B) we need to consider all possible future realizations of Z,, for ev-
ery n € [k + 1,k + N] while marginalizing over all possible locations and data
association realizations (see Section 5.2 in [16]). However, solving these integrals
analytically is typically not feasible. In practice, the solution should be approx-
imated by sampling future observations from the relevant distributions. Using
these samples, the agent constructs and traverses a belief tree (as shown in Fig.
[[a) which branches according to future actions and observations.

Nevertheless, the number of hypotheses grows exponentially with the plan-
ning horizon (see Fig. [[h). Specifically, given |My| hypotheses and D data as-
sociation realizations, i.e. different fj4; at each look-ahead step, the number of
belief components at the nth look-ahead step is |[Myy,| = |Mg||D|". As such,
considering every possible future hypothesis is not practical.

4 Methodology

In this section we first describe how to construct a belief tree skeleton during
planning. We then present a general framework to reduce the computational com-
plexity when solving a sampling based approximation of (&). Finally, we analyze
the implications of using our proposed framework under different conditions.

4.1 Constructing the belief tree skeleton

Previous works addressed the exponential growth of the belief tree with the plan-
ning horizon without reasoning about data association. In this work we analyze
and describe, for the first time, the structure of a belief tree given a mixture
belief such as ([B)). In this setting there is an additional exponential growth in
the number of belief components for every considered future observation real-
ization (see Fig. [T]). These realizations are functions of future beliefs (@), data
association realizations and actions

P(Zi41:k4n )bk Whiktn—1, Bl 1:k4n)- (1)
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To construct the belief tree in practice, we sample states from beliefs, sample
data association given states and finally sample observations from ().

Our key observation is that in order to construct a belief tree skeleton, i.e.
without explicitly calculating or holding posterior beliefs at each node, we can
sample future observations in two different ways. We describe these two options
for a planning horizon of n = 2. Specifically, we can either rewrite (@) as

P(Zkt2|bkt118y 41 Ukt15 Brr2)P(Zht1[bk, ks Brt1), (8)

where by y1s,,, is a posterior belief and each term is evaluated by integrating
over Tpy1:x+2, Or, by first integrating and then applying the chain rule as

/P(Zk+2|$k+2, Br+2) / P(xrq2|rg 1, 1) P(Zrg1 [Trr1, Bra1)P(@gr1 b, ug)-
Tg+42 Tr+41

(9)

While these two expressions are analytically identical, they represent two differ-

ent processes of sampling. In the former observations are sampled from posterior

beliefs, while in the latter observations are sampled using the motion and obser-

vation models, similar to the MCTS particle trajectories techniques in [211[25].

Algorithm 1: Construct belief tree skeleton

Input: prior belief by, action sequence wp:j4n—1
Output: sampled future observations Ziy1:5+4n

1 Z2=10

2 T~ bk

3 for i € [1,n] do

4 Thpi ~ P(Tpys|Trqio1, Uktrio1)
5 determine B4, based on x4,
6 Zti ~ P(ZryilTiti, Brti)

7 Z=20 Zppi

8 return 7

To avoid the explicit representation of the exponential number of belief com-
ponents, in this work we sample future observations using (@) and bypass the
inference stage. We formulate this sampling method in Algorithm [I

Yet, this is of little help if the posterior belief is required for calculating the
cost function itself. We next describe our approach to avoid these calculations.

4.2 Nonmyopic Distilled Data Association BSP

Our goal is to reduce the computational complexity of nonmyopic BSP prob-
lems where ambiguous data association is explicitly considered, i.e. solving (@)
efficiently. We start by writing (@) in a recursive form

J (b, uk:krn—1) = ¢ (b, up) + E E  [J(bkt1, ukrreen—1)]| - (10)

Br+1 [ Zr+1|Br+1
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As in practice we approximate the solution via samples, we rewrite (I0) as

Br+1 | Zrt1|Br+1

J (g, wrprn—1) = ¢ (b, ug) + E { 1) {j (bk+lauk+1:k+N—l)}] . (11)

Using Bellman’s principle of optimality, the optimal solution for () is

J (bkaﬁZ:k+N—1) = min{e (b, ux) + E { E {j (bk+1vu1t+1;k+1v—1)H}a
Uk Br+1 | Zrt1Br+1
(12)

where 4}, y_1 = argmin J (bg, ug.tn—1). To reduce the computational complex-
u

ity in (IZ), we propose utilizing the belief tree skeleton, without having access
to posterior beliefs, to solve an easier to compute version of the considered cost
function. In general, the cost function over the original beliefs can be bounded
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Fig. 2: BSP using bounds over the objective function. In (a) choosing action #1 is guaranteed to be optimal as the
corresponding upper bound is lower than all other lower bounds; In (b) choosing action #2 is not guaranteed to be
optimal. The loss in solution quality, however, is upper bounded.

using a simplified belief b; as
c(bg, ur) < ¢ (b, uk) < € (bf, ug) .- (13)

We note that this formulation also supports replacing the cost function itself
with a computationally simpler function, as in [1220].

Using the belief tree skeleton and some method to calculate the simplified
beliefs, to be defined, we now traverse the belief tree from the leafs upwards. At
each belief tree node the bounds over the objective function (Bl are calculated
recursively using the Bellman equation (I2) and ([I3)) for every n € [0, N — 1]

J (bns kgny1) = € (B tkin) + B
ﬂk+l

{ E [ (bkrnsrs U(k+n)+)ﬂ ’

Zktn+1|Brt1

j(bk+nau(k+n)+) = 5(b2+n,uk+n) + BE { E [j (bk+n+1,u(k+n)+)ﬂ )
k+1 Zk+n+1\ﬁk+1
(14)

where U4+ 2 Upyn:kseN—1. If these bounds do not overlap (see Fig. 2al), one
can guarantee to select the optimal action sequence as in ([I2)).

Our general Nonmyopic Distilled Data Association BSP (ND2A-BSP) ap-
proach is presented in Algorithm 2l The algorithm receives a belief tree skeleton;
a heuristic function h used to select the subsets of hypotheses in each belief tree
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node, i.e. defines b; ; and a decision rule R which decides whether the con-
sidered subsets are enough, e.g. when no overlap between bounds is required or
when calculations exceed a user defined time threshold, providing anytime per-
formance guarantees. The algorithm returns the best action sequence, given the
computational constraints, and an upper bound on the loss in solution quality.

It is worth mentioning that our approach can be adapted to a setting where
the belief tree construction is coupled with Q function estimates, e.g. using
MCTS and Upper Confidence Bound (UCB) techniques [21], following a similar
approach to the one presented in [23]. However, we emphasize that as the belief
tree skeleton approximates (I0) via samples, our method provides performance
guarantees with respect to that specific skeleton, i.e. with respect to ([I2)). Not to
be confused with the asymptotic guarantees of MCTS approaches, with respect
to the theoretical problem ([0, which is an entirely different aspect not related
to the approach presented in this paper.

Algorithm 2: Generic Nonmyopic Distilled Data Association BSP

Input: belief tree skeleton T, simplification heuristic h, decision rule R

Output: action sequence u™, loss

Function ND2A-BSP(T, h, R):

LB*,UB",loss = PLAN (T.root, h, R)

u* <+ corresponding to LB*, UB*

return u*,loss

Function PLAN(Node, h, R):

Node.by,  ,, «+ h(Node)

if Node is a leaf then
return ¢ (Node.by ), (Node.by ) ,0 // loss =0 at leaf

Node.bounds = 0

foreach child C of Node do
Ib, ub, loss <+ ND2A-BSP(C, h, R)
LB «+ c(Node.b;, ) +1b // objective lower bound (I4)
UB <+ ¢ (Node.b} ) + ub // objective upper bound (I4)
Node.bounds = Node.bounds U (LB, UB)

while R (Node.bounds) is not satisified do

| ND2A-BSP(Node, h, R) // further simplification is needed
LB*,UB*,loss +— Node.bounds
return LB*, UB",loss

© N O N wN -
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We now analyze different settings, within inference and planning, where the
agent either has or does not have hard budget constraints. To the best of our
knowledge, this is the first time that these aspects are addressed in works that
attempt to reduce the computational complexity of the planning problem. The
differences between the considered settings are summarized in Table [l

budget constraints in inference|budget constraints in planning
Case 1

Case 2 X v

Case 3 v X

Case 4 v 4

Table 1: A summary of the considered scenarios, with respect to budget constraints on the number of supported
hypotheses in each algorithm, for each considered case. Cases 1&2 are presented in Section @3] while cases 3&4 are
presented in section 4]
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4.3 No budget constraints in inference

In this section we assume that there are no constraints in inference, i.e. each belief
tree node can theoretically hold every possible hypothesis within the planning
horizon. The objective of inference however is different than the main goal of
BSP. In inference the agent tries to represent the considered state as accurately
as possible while in planning the goal is to retrieve the optimal action sequence
or policy. As such, in this setting, the problems are decoupled (see Fig. [3al).
We now further separate between two cases, when the planning algorithm
either has budget constraints or not. In both cases, each belief tree node still has
an exponential number of components, which we avoid calculating explicitly.

Case 1 With no budget constraints in planning we propose bounding the cost
function as

¢ (bis Uhts Zig 1)+ bgn) < € (Okns Urgn) < € (bis Uty Z(g1y4, biyn) - (15)

where upy 2 Uppin_1 and Z(k+1)+ 2 Ziitkan. A key difference from the
approach presented in [24] is that these bounds are not functions of by,.

As the number of belief components grows exponentially we avoid calculating
¢ (bx1n). Instead, we calculate a simplified belief b;_ ,, using Bayesian updates
via Uk k+n—1 and Zgi1.p+n, only for specific components from the prior belief
bi.. This extends our proposed approach in [I8] to the nonmyopic case. Each

simplified belief is formally defined, using M}, € My, components, as

w’
s A 2 : 8,7 17 s,r A k+n
k+n — wk+n k+n ) wk+n - m,s (16)
warn
TEM}?+71

m,s A

m . . .
where w5 =3 o g, Witn 18 used to re-normalize each corresponding weight.

Most importantly, a simplified belief bj , , is calculated using only a subset of
hypotheses, i.e. without calculating the posterior belief by, .

Using Algorithm [2] given a decision rule R, with no overlap between bounds
(@), and a heuristic h, e.g. which chooses hypotheses greedily based on prior
weights, we guarantee the selection of the optimal actions sequence, with respect
to the specific belief tree, while reducing the computational complexity.

Fig. 3: No budget constraints in inference. Colors denote components generated from previous time steps. (a) Planning
without budget constraints, the algorithm can choose any subset of components, highlighted in yellow, in each node
to evaluate the bounds; (b) With budget constraints in planning, each subset selection is bounded in size by C = 2.
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Case 2 Under budget constraints in planning, the algorithm can use up to C
components, in each simplified belief b7, , to calculate the bounds in (I5]). Yet,
each subset of components is chosen independently w.r.t. by4, which develops
exponentially, i.e. hypotheses chosen in time steps £ + n and k 4+ n + ¢ are not
necessarily related (see Fig. B).

In this setting, the number of possible distilled subsets for each b;, is

(‘M’?"I) which can be very high. Moreover, there are no guarantees that the
bounds between candidate actions would not overlap. However, using the bounds
in ([T), our proposed approach can yield the worst-case loss in solution quality,
i.e. provide performance guarantees (see Fig. 2L).

4.4 Hard budget constraints in inference

In the previous section we only considered that the belief at the root of the tree
is provided from inference. As the posterior beliefs within the constructed belief
tree were with an exponentially increasing number of components, i.e. without
budget constraints, the key idea was to avoid making explicit inferences. Instead,
we calculated bounds that utilized, under budget constraints in planning, a fixed
number of components. In practice, however, real world autonomous systems do
not work that way. Instead, they are often required to operate in real time
using inexpensive hardware with hard computational budget constraints in both
inference and planning.

Under hard budget constraints on the number of considered hypotheses in
inference, the posterior belief in each belief tree node is determined by (@), i.e.
|M ;f '+ n| < C under some heuristic hi"f. Moreover, once a hypothesis is discarded
in time step k it is no longer considered in future time steps. Yet, the decision
regarding which components to choose, while calculating the bounds in planning,
depends on either if the heuristic in (@) is given or determined within planning.
To the best of our knowledge, the latter is a novel concept never considered.

Fig. 4: Hard budget constraints in inference. Colors denote components generated from previous time steps. (a)
Planning given the heuristic in inference, the algorithm can only evaluate the bounds using components that represent

how the belief would evolve in inference; (b) The planning algorithm is free to choose components under any valid
heuristics in inference given the budget C. Each selected component in time step k + n + 1 must originate from a
selected component in time step k + n.

Case 3 In this setting we consider the heuristic in ) to be given within plan-
ning, i.e. posterior belief tree nodes exactly represent how the belief would evolve
in inference under [@). In contrast to Section E3] as the number of components
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does not grow exponentially, we sample future observations according to (§) and
construct the belief tree explicitly, i.e. perform inference in each node. Therefore,
the planning algorithm can no longer choose any subset of components for each
bi,,, 1.e. hypotheses discarded in time step k + n cannot be considered in time
step k +n—+ 1 (see Fig. H).

The bounds over the considered cost are now a function of the belief in the
previous time step under (). Specifically, we rewrite them as

Q(bg+n717 Uk+n—1, Zk+17 bz+n)§ C(be“ ukJrn)S c (b$+n717 Uk+n—1, Zk+17 szrn) . (17)

These bounds represent a recursive setting in contrast to the bounds in ([I3)).
Using our approach iteratively in each time step, reduces the computational
complexity of the considered cost function in planning while providing perfor-
mance guarantees. As each posterior belief is determined by inference (Fig Hal),
performance guarantees are with respect to the given heuristic in inference ().

Case 4 We now relax the assumption that the planning algorithm is confined
to the specific heuristic in (). Unlike in Case 2, where each subset of compo-
nents can be used in each node to calculate the bounds, this setting has an
additional constraint. We formulate this by representing the bounds from (%)
in two consecutive time steps

¢ (bks Ut Zig 1)+ bign) < € (brrn) < € 0k Uk, Z(eg1)+5 Ohgn) »
¢ (bry Ukt s Z(r 1) 45 Opgng1) < € (Orgng1) < € (bks g Zos 1)+ bpgmar) > (18)

5,17 5,J
s [ ME | M| <C and WhY L € b,y = bl € by

where bzin denotes the jth hypothesis in the simplified subset b7, and bzfn +1

5,]

denotes the ith hypothesis in the simplified subset by, . | |, originated from b,/ ,

i.e. as in Fig. [0l

The components chosen in the sequence of bounds (I8) which minimizes the
loss, w.r.t. the original problem, define a heuristic h?* (see Fig.[7d), which is valid
in inference. The heuristic h?* can be used with any BSP approach to solve (I2))
and to reduce computational complexity, using our approach, as described in
Case 3. To the best of our knowledge, leveraging hP* is a novel concept. We
note that while h?* minimizes the loss in planning, it is generally different than
hinf. As such, the implications of utilizing such heuristic in inference are not
straightforward. The study of such mechanism is left for future research.

4.5 The cost function

While the formulation thus far was for a general cost function, in this section
we focus on active disambiguation of hypotheses. Specifically, we utilize the
Shannon entropy, defined over posterior belief components weights. The cost
for a belief by, with My, components is thus given by Hiin 2 ¢ (bpin) =
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_ w£+n w£+n A r . o
ZTGMH” P log (—an ), where Ny, = ZTGMH” Wi, - Similarly, for a sim

plified belief by, with Mg, C My, the cost is given by Hj 2¢ (bz+n) =
s,T s,T
- ZTEM§+7L wi'tnlog (wi,).
To allow fluid reading, proofs for all theorems and corollaries are given in the
supplementary material [19].

Theorem 1. For each belief tree node representing a belief byy, with Mgy,
components and a subset Mg, C Myin the cost can be expressed by

m,s r g

Wit Nk4n Wi yn Wi yn
Hopn = D [ +zo< )]_ Whin g, <_ 9
k+n nk+n|: k+n g wm,s Z Nhotn g Nhotn ( )

ktn TeﬁM}‘z+n

where =M, & Miyn \ Mg, ..

Using Theorem [I we derive bounds for Hyy, which are computationally more
efficient to calculate as we only consider a subset of hypotheses. However, as eval-
uating 1,4, requires by definition evaluating all posterior components weights,
which we do not have access to, we need to bound this term as well (denoted
below as LB [Ni1r] and UB [4n]).

Theorem 2. Given a subset of components My, , € Myyn, the cost term in
each belief tree node is bounded by

wy LB [Ni4n
€5 el =gy [+ oo (S )] e
n k+n

ws uB [nkJrn] _ v
UB[Hptrn] = _ ktn {’HS . +lo (T —Alog | ——— |, (21
[ k+ ] LB [771@+n] i g ktn e |j k+n| ( )

=~ _ w£+n S
where 3 = 1 ZreM,jM aBl ] and |=M;, | > 2.

Furthermore, considering different levels of simplifications, i.e. adding belief com-
ponents to M, , these bounds converge.

Corollary 1. The bounds in Theorem[d converge to Hyn when My, — My,

M;+n‘>Mk+n

A recursive update rule is given in Section C of the supplementary material [19].

Theorem 3. Given a subset of components M, € Myyn, the term Ngiyn, in
each belief tree node, is bounded by

m,s m,s M, n T - 2
LB [Mrtn] = wiis < Mern Swils, + (| IJ\ZI = Z wk) H" =UB [14n],

TGM]‘:+" =1
(23)
where o' £ maz (P (Zgiilrkri)) and wi is the prior weight at time k for every

component in My, at time k + n.
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As in Theorem[2] since we only consider a subset of hypotheses, these bounds are
also computationally more efficient to calculate and converge. We also note that
specifically for Case 3, the bounds in Theorem Pl and Theorem Bl are calculated
iteratively in each time step k + n given the belief b;f 4n_1 as presented in (@).

Corollary 2. The bounds in Theorem[3 converge to nyin when My, — My,

lim LB [Mtn] = Mtn = UB [1k4n] - (24)

M}‘:+n‘>Mk+n

A recursive update rule is given in Section C of the supplementary material [19].

5 Results

We evaluate the performance of our approach for the different cases presented in
Section [l Our prototype implementation uses the GTSAM library [3]. Our con-

160
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. ., _
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H . « = s
@
. -
5 A4 ¥
] % o
. .
201 .
(o]
. .
. . ° *
o 2 4 6 8 100 10 o 160
st
(a) (b) (c)

Fig. 5: (a) The floors environment where F identical floors represent different prior hypotheses. Each floor contains
a unique landmark. The true location of the agent is highlighted in yellow; (b) The 2d_random environment with many
identical landmarks. The agent is initially placed in front of a blue square with no other prior information; (c) A
planning session where ambiguous data association results in two hypotheses denoted by the yellow and blue ellipses.

sidered scenarios represent highly ambiguous environments containing perceptu-
ally identical landmarks in different locations. In our first scenario, floors, the
agent is initially located in one of F' floors such that each floor contains a unique
landmark, specific to that floor (Fig. Bal). In our second scenario, 2d_random,
the agent is initially placed in a random environment in front of a blue square
(Fig. Bh). Both scenarios can be considered as versions of the kidnapped robot
problem. With no other prior information, the initial belief, in both cases, is
multi-modal containing |My| hypotheses. The agent captures the environment
using range measurements containing a class identifier, e.g. red triangle or green
square. When the agent receives a measurement to some landmark which is am-
biguous, i.e. it can theoretically be generated from more than one landmark,
the number of hypotheses grows (see Fig. [Ed). The number of identical land-
marks can be adjusted to represent higher ambiguity, increasing the number of
considered hypotheses. The agent’s goal is to disambiguate between hypotheses
by solving the corresponding BSP problem (@) at each planning session using
entropy over posterior belief components weights as a cost function.

In our first experiment we consider Case 1. We compare our approach with
evaluating the cost function over the original belief, i.e. considering every possible
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Fig. 6: Case 1 study for floors and 2d_random environments. All scenarios presented carry zero loss. (a),(d) Planning
time as a function of the planning horizon. In both environments, all settings the considered 4 prior hypotheses;
(b),(e) Planning time as a function of the number of prior hypotheses. In both environments, all settings considered
a planning horizon of 3; (c),(f) % components used to calculate bounds in each level of the belief tree. Circles scales
are normalized as the number of nodes grows exponentially going down the tree.

future hypothesis. The heuristic in planning chooses the subset of components
for each belief tree node greedily based on prior weights at time k. The decision
rule R was set as no overlap, i.e. no loss with guaranteed optimal solution. The
computational merits of our approach are presented in Fig. [6l Moreover, in Fig.
[6d6fl we can see that with a longer planning horizon the subset of hypotheses

used for disambiguation becomes smaller. As more observations are utilized along
the horizon, it is easier to discard wrong hypotheses in our considered cases.

£100rs:BSP with budget constraints £100rs:BSP with budget constraints £1loors: Case 4
1o —o~ ND2A-BSP —8~ ND2A-BSP i
o o o
"7 " 'budget : tree depth
(a) (b)

Fig. 7: (a) Normalized loss as a function of the size of the budget in Case 2. In all settings the number of floors, i.e.
prior hypotheses was set to 12; (b) Normalized loss along the depth of a belief tree in Case 2 with C = 3 components
and a planning horizon of n = 2; (c) Normalized loss as a function of the size of the budget in Case 4, i.e. considering

every valid heuristic in inference hP_candidate ~\yhen ¢ < 6, the heuristic hP* induces a smaller loss than 7S,

When C > 6, both hP* and h*"™f induce zero loss, i.e. are optimal in this setting.

In our second experiment we consider Case 2. In Fig. [fal we present the loss
as a function of the budget size. As expected, with higher budget constraints the
loss in solution quality becomes smaller. Moreover, as can be seen in Fig. [7Dl the
loss is higher closer to the root of the belief tree, as bounds are accumulated in
the non-myopic setting, increasing the overlap.

Considering Case 3, our experiments did not show any computational im-
provements between calculating the original cost function and using our ap-
proach. We indicate that this is because there is no exponential growth in the
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number of hypotheses within the horizon and our considered cost function is
linear w.r.t. the number of components. However, as seen in [24], using a differ-
ent cost, which is beyond the scope of this work, our approach can reduce the
computational complexity while providing guarantees in Case 3 as well.

Finally, we consider Case 4. We first report that under this setting the compu-
tational complexity is high as every possible heuristic under the given budget is
considered. In Fig. [[d preliminary results indicate that this process can improve
the bounds over the loss in solution quality vs a given heuristic A"/ .

6 Conclusions

In this work we introduced ND2A-BSP, an approach to reduce the computa-
tional complexity in data association aware BSP with performance guarantees
for the nonmyopic case. We rigorously analyzed our approach considering differ-
ent settings under budget constraints in inference and/or planning.

Furthermore, future research will consider how to utilize information from
planning in inference when the latter is subject to hard computational budget
constraints, as in most real-world autonomous systems.

References

1. Agarwal, S., Tamjidi, A., Chakravorty, S.: Motion planning for active data asso-
ciation and localization in non-gaussian belief spaces. In: Intl. Workshop on the
Algorithmic Foundations of Robotics (WAFR). Springer Proceedings in Advanced
Robotics, vol. 13, pp. 288-303. Springer (2016)

2. Carlone, L., Censi, A., Dellaert, F.: Selecting good measurements via 11 relaxation:
A convex approach for robust estimation over graphs. In: IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS). pp. 2667-2674. IEEE (2014)

3. Dellaert, F.: Factor graphs and GTSAM: A hands-on introduction. Tech. Rep.
GT-RIM-CP&R-2012-002, Georgia Institute of Technology (September 2012)

4. Elimelech, K., Indelman, V.: Simplified decision making in the belief space us-
ing belief sparsification. Intl. J. of Robotics Research (2021), accepted, ArXiv:
https://arxiv.org/abs/1909.00885

5. Fourie, D., Leonard, J., Kaess, M.: A nonparametric belief solution to the bayes
tree. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) (2016)

6. Hsiao, M., Kaess, M.: Mh-isam2: Multi-hypothesis isam using bayes tree and hypo-
tree. In: IEEE Intl. Conf. on Robotics and Automation (ICRA) (May 2019)

7. Hsiao, M., Mangelson, J.G., Suresh, S., Debrunner, C., Kaess, M.: Aras: Ambiguity-
aware robust active slam based on multi-hypothesis state and map estimations. In:
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS). pp. 5037-5044.
IEEE (2020)

8. Indelman, V., Nelson, E., Dong, J., Michael, N., Dellaert, F.: Incremental dis-
tributed inference from arbitrary poses and unknown data association: Using col-
laborating robots to establish a common reference. IEEE Control Systems Mag-
azine (CSM), Special Issue on Distributed Control and Estimation for Robotic
Vehicle Networks 36(2), 41-74 (2016)



16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

M. Shienman and V. Indelman

Indelman, V., Nelson, E., Michael, N., Dellaert, F.: Multi-robot pose graph local-
ization and data association from unknown initial relative poses via expectation
maximization. In: IEEE Intl. Conf. on Robotics and Automation (ICRA) (2014)
Jiang, F., Agrawal, V., Buchanan, R., Fallon, M., Dellaert, F.: imhs: An incremen-
tal multi-hypothesis smoother. arXiv preprint arXiv:2103.13178 (2021)

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., Dellaert, F.: iSAM2:
Incremental smoothing and mapping using the Bayes tree. Intl. J. of Robotics
Research 31(2), 217-236 (Feb 2012)

Kitanov, A., Indelman, V.: Topological multi-robot belief space planning in un-
known environments. In: IEEE Intl. Conf. on Robotics and Automation (ICRA).
pp. 5726-5732 (2018)

Kschischang, F., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product al-
gorithm. IEEE Trans. Inform. Theory 47(2), 498-519 (February 2001)

Lajoie, P.Y., Hu, S., Beltrame, G., Carlone, L.: Modeling perceptual aliasing in
slam via discrete-continuous graphical models. IEEE Robotics and Automation
Letters (RA-L) (2019)

Olson, E., Agarwal, P.: Inference on networks of mixtures for robust robot mapping.
Intl. J. of Robotics Research 32(7), 826-840 (2013)

Pathak, S., Thomas, A., Indelman, V.: A unified framework for data association
aware robust belief space planning and perception. Intl. J. of Robotics Research
32(2-3), 287-315 (2018)

Shelly, O., Indelman, V.. Hypotheses disambiguation in retrospective. IEEE
Robotics and Automation Letters (RA-L) (2022), accepted

Shienman, M., Indelman, V.: D2a-bsp: Distilled data association belief space plan-
ning with performance guarantees under budget constraints. In: IEEE Intl. Conf.
on Robotics and Automation (ICRA) (2022)

Shienman, M., Indelman, V.: Nonmyopic distilled data association belief space
planning under budget constraints. Tech. rep., Technion - Israel Institute of Tech-
nology (2022), |https://tinyurl.com/4h3b9mz8

Shienman, M., Kitanov, A., Indelman, V.: Ft-bsp: Focused topological belief space
planning. IEEE Robotics and Automation Letters (RA-L) 6(3), 4744-4751 (2021)
Silver, D., Veness, J.: Monte-carlo planning in large pomdps. In: Advances in Neural
Information Processing Systems (NIPS). pp. 2164-2172 (2010)

Sunderhauf, N., Protzel, P.: Towards a robust back-end for pose graph slam. In:
IEEE Intl. Conf. on Robotics and Automation (ICRA). pp. 1254-1261. IEEE
(2012)

Sztyglic, O., Zhitnikov, A., Indelman, V.: Simplified belief-dependent reward mcts
planning with guaranteed tree consistency. arXiv preprint arXiv:2105.14239 (2021)
Sztyglic, O., Indelman, V.. Online pomdp planning via simplification. arXiv
preprint arXiv:2105.05296 (2021)

Ye, N., Somani, A., Hsu, D., Lee, W.S.: Despot: Online pomdp planning with
regularization. JAIR 58, 231-266 (2017)


https://tinyurl.com/4h3b9mz8

	Nonmyopic Distilled Data Association Belief Space Planning Under Budget Constraints

