Skip to main content

MI2AMI: Missing Data Imputation Using Mixed Deep Gaussian Mixture Models

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13810))

  • 832 Accesses

Abstract

Imputing missing data is still a challenge for mixed datasets containing variables of different nature such as continuous, count, ordinal, categorical, and binary variables. The recently introduced Mixed Deep Gaussian Mixture Models (MDGMM) explicitly handle such different variable types. MDGMMs learn continuous and low dimensional representations of mixed datasets that capture the inter-variable dependence structure. We propose a model inversion that uses the learned latent representation and maps it with the observed parts of the signal. Latent areas of interest are identified for each missing value using an optimization method and synthetic imputation values are drawn. This new procedure is called MI2AMI (Missing data Imputation using MIxed deep GAussian MIxture models). The approach is tested against state-of-the-art mixed data imputation algorithms based on chained equations, Random Forests, k-Nearest Neighbours, and Generative Adversarial Networks. Two missing values designs were tested, namely the Missing Completly at Random (MCAR) and Missing at Random (MAR) designs, with missing value rates ranging from 10% to 30%.

Granted by the Research Chair NINA under the aegis of the Risk Foundation, an initiative by BNP Cardif.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Audigier, V., Husson, F., Josse, J.: A principal component method to impute missing values for mixed data. Adv. Data Anal. Classif. 10, 5–26 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. van Buuren, S., Groothuis-Oudshoorn, K.: mice: multivariate imputation by chained equations in r. J. Stat. Softw. 45(3), 1–67 (2011). https://doi.org/10.18637/jss.v045.i03. https://www.jstatsoft.org/index.php/jss/article/view/v045i03

  3. Cagnone, S., Viroli, C.: A factor mixture model for analyzing heterogeneity and cognitive structure of dementia. AStA Adv. Stat. Anal. 98(1), 1–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Choudhury, A., Kosorok, M.R.: Missing data imputation for classification problems (2020)

    Google Scholar 

  5. Christoffersen, B., Clements, M., Humphreys, K., Kjellström, H.: Asymptotically exact and fast gaussian copula models for imputation of mixed data types (2021)

    Google Scholar 

  6. Conn, A.R., Gould, N.I., Toint, P.L.: Trust region methods. SIAM (2000)

    Google Scholar 

  7. Deng, G., Han, C., Matteson, D.S.: Learning to rank with missing data via generative adversarial networks. arXiv preprint arXiv:2011.02089 (2020)

  8. Fuchs, R., Pommeret, D., Viroli, C.: Mixed deep gaussian mixture model: a clustering model for mixed datasets. Advances in Data Analysis and Classification, pp. 1–23 (2021)

    Google Scholar 

  9. Gower, J.C.: A general coefficient of similarity and some of its properties. Biometrics, pp. 857–871 (1971)

    Google Scholar 

  10. Kowarik, A., Templ, M.: Imputation with the r package vim. J. Stat. Softw. 74(7), 1–16 (2016). https://doi.org/10.18637/jss.v074.i07. https://www.jstatsoft.org/index.php/jss/article/view/v074i07

  11. Lee, D., Kim, J., Moon, W.J., Ye, J.C.: Collagan : Collaborative gan for missing image data imputation (2019)

    Google Scholar 

  12. Li, S.C.X., Jiang, B., Marlin, B.: Learning from incomplete data with generative adversarial networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=S1lDV3RcKm

  13. Lim, T., Loh, W., Shih, Y.: A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach. Learn. 40(3), 203–228 (2000)

    Article  MATH  Google Scholar 

  14. McLachlan, G.J., Basford, K.E.: Mixture Models: Inference and Applications to Clustering. Marcel Dekker, New York (1988)

    MATH  Google Scholar 

  15. Moustaki, I.: A general class of latent variable models for ordinal manifest variables with covariate effects on the manifest and latent variables. Br. J. Math. Stat. Psychol. 56(2), 337–357 (2003)

    Article  MathSciNet  Google Scholar 

  16. Moustaki, I., Knott, M.: Generalized latent trait models. Psychometrika 65(3), 391–411 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Murray, J.S., Reiter, J.P.: Multiple imputation of missing categorical and continuous values via bayesian mixture models with local dependence. J. Am. Stat. Assoc.111(516), 1466–1479 (2016). https://doi.org/10.1080/01621459.2016.117. https://ideas.repec.org/a/taf/jnlasa/v111y2016i516p1466-1479.html

  18. Rubin, D.B.: Inference and missing data. Biometrika 63(3), 581–592 (1976). https://doi.org/10.1093/biomet/63.3.581

  19. Shang, C., Palmer, A., Sun, J., Chen, K.S., Lu, J., Bi, J.: Vigan: Missing view imputation with generative adversarial networks (2017)

    Google Scholar 

  20. Stekhoven, D.J., Bühlmann, P.: MissForest-non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1), 112–118 (2011). https://doi.org/10.1093/bioinformatics/btr597

  21. Viroli, C., McLachlan, G.J.: Deep gaussian mixture models. Stat. Comput. 29(1), 43–51 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yoon, J., Jordon, J., van der Schaar, M.: GAIN: missing data imputation using generative adversarial nets. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 5689–5698. PMLR, 10–15 July 2018. https://proceedings.mlr.press/v80/yoon18a.html

  23. Zhao, Y., Udell, M.: Missing value imputation for mixed data via gaussian copula (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denys Pommeret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fuchs, R., Pommeret, D., Stocksieker, S. (2023). MI2AMI: Missing Data Imputation Using Mixed Deep Gaussian Mixture Models. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13810. Springer, Cham. https://doi.org/10.1007/978-3-031-25599-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25599-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25598-4

  • Online ISBN: 978-3-031-25599-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics