Skip to main content

Neural Network Based Drift Detection

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2022)

Abstract

The unprecedented growth in machine learning has shed light on its unique set of challenges. One such challenge is apparent changes in the input data distribution over time known as Concept Drifts. In such cases, the model’s performance degrades according to the changes in the data distribution. The remedy for concept drifts is retraining the model with the most recent data to improve the model’s performance. The significant issue is identifying the precise point at which the model must be updated for maximum performance benefits with minimum retraining effort. This problem is challenging to address in unsupervised detection methods with no access to label data to identify the changing distributions for the targets of the input data. Here, we present our unsupervised method based on a Generative Adversarial Network and a feed forward neural network for detecting concept drifts without the need for target labels. We demonstrate that our method is better at identifying concept drifts and outperforms the baseline and other comparable methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ogozuacik/concept-drift-datasets-scikit-multiflow.

  2. 2.

    https://github.com/cfellicious/NeuralNetworkbasedDriftDetection.

References

  1. Babu, G., Feigelson, E.: Astrostatistics: goodness-of-fit and all that! In: Astronomical Data Analysis Software and Systems XV, vol. 351, p. 127 (2006)

    Google Scholar 

  2. Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R., Morales-Bueno, R.: Early drift detection method. In: Fourth International Workshop on Knowledge Discovery from Data Streams, vol. 6, pp. 77–86 (2006)

    Google Scholar 

  3. Bayram, F., Ahmed, B.S., Kassler, A.: From concept drift to model degradation: an overview on performance-aware drift detectors. Knowl.-Based Syst. 108632 (2022)

    Google Scholar 

  4. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 443–448. SIAM (2007)

    Google Scholar 

  5. Engel, J., Agrawal, K.K., Chen, S., Gulrajani, I., Donahue, C., Roberts, A.: Gansynth: adversarial neural audio synthesis. arXiv preprint arXiv:1902.08710 (2019)

  6. Fisher, R.A.: Statistical methods for research workers. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics. Springer Series in Statistics, pp. 66–70. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-4380-9_6

  7. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29

    Chapter  Google Scholar 

  8. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Computi. Surv. (CSUR) 46(4), 1–37 (2014)

    Article  MATH  Google Scholar 

  9. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)

  10. Gözüaçık, Ö., Büyükçakır, A., Bonab, H., Can, F.: Unsupervised concept drift detection with a discriminative classifier. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2365–2368 (2019)

    Google Scholar 

  11. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)

    Google Scholar 

  12. Harries, M., Wales, N.S.: Splice-2 comparative evaluation: electricity pricing (1999)

    Google Scholar 

  13. Hu, H., Kantardzic, M., Sethi, T.S.: No free lunch theorem for concept drift detection in streaming data classification: a review. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 10(2), e1327 (2020)

    Article  Google Scholar 

  14. Justel, A., Peña, D., Zamar, R.: A multivariate Kolmogorov-Smirnov test of goodness of fit. Stat. Probab. Lett. 35(3), 251–259 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  16. de Lima Cabral, D.R., de Barros, R.S.M.: Concept drift detection based on fisher’s exact test. Inf. Sci. 442, 220–234 (2018)

    Google Scholar 

  17. Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. Adv. Neural. Inf. Process. Syst. 29, 469–477 (2016)

    Google Scholar 

  18. Losing, V., Hammer, B., Wersing, H.: KNN classifier with self adjusting memory for heterogeneous concept drift. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 291–300. IEEE (2016)

    Google Scholar 

  19. Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-multiflow: a multi-output streaming framework. J. Mach. Learn. Res. 19(1), 2914–2915 (2018)

    Google Scholar 

  20. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  21. dos Reis, D.M., Flach, P., Matwin, S., Batista, G.: Fast unsupervised online drift detection using incremental Kolmogorov-Smirnov test. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1545–1554 (2016)

    Google Scholar 

  22. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Suprem, A., Arulraj, J., Pu, C., Ferreira, J.: Odin: automated drift detection and recovery in video analytics. arXiv preprint arXiv:2009.05440 (2020)

  24. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  25. Zhan, F., Zhu, H., Lu, S.: Spatial fusion GAN for image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3653–3662 (2019)

    Google Scholar 

Download references

Acknowledgement

This work was partially funded by the Bundesministerium für Bildung und Forschung (BMBF, German Federal Ministry of Education and Research) – project 01IS21063A-C (SmartVMI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christofer Fellicious .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fellicious, C., Wendlinger, L., Granitzer, M. (2023). Neural Network Based Drift Detection. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13810. Springer, Cham. https://doi.org/10.1007/978-3-031-25599-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25599-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25598-4

  • Online ISBN: 978-3-031-25599-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics