Abstract
The digitalization entails a significant increase of information that can be used for decision-making in many business areas. In production, the proliferation of smart sensor technology leads to the real-time availability of manifold information from entire production environments. Due to the digitalization, many decision processes are automated. However, humans are supposed to remain at the center of decision-making to steer production. One central area of decision-making in digitalized production is real-time anomaly detection. Current implementations mainly focus on finding anomalies in sensor data streams. This research goes a step further by presenting design, prototypical implementation and evaluation of a real-time semantic anomaly labeler. The core functionality is to provide semantic annotations for anomalies to enable humans to make more informed decisions in real-time. The resulting implementation is flexibly applicable as it uses local data features to distinguish kinds of anomalies that receive different labels. Demonstration and evaluation show that the resulting implementation is capable of reliably labelling anomalies of different kinds from production processes in real-time with high precision.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barbariol, T., Feltresi, E., Susto, G.A.: Self-diagnosis of multiphase flow meters through machine learning-based anomaly detection. Energies 13(12), 3136 (2020)
Beierle, C. and Kern-Isberner, G. 2019. Methoden wissensbasierter Systeme. Springer Fachmedien Wiesbaden, Wiesbaden
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection. ACM Comput. Surv. 41(3), 1–58 (2009)
Dunia, R., Qin, S.J., Edgar, T.F., McAvoy, T.J.: Identification of faulty sensors using principal component analysis. AIChE J. 42(10), 2797–2812 (1996)
Hoßfeld, S.: Optimization on decision making driven by digitalization. JEW 5, 2 (2017)
Jin, X., Chow, T.W.S., Tsui, K.-L.: Online anomaly detection of brushless DC motor using current monitoring technique. Int. J. Performab. Eng. 10, 263 (2014)
Kagermann, H., Wahlster, W., Helbig, J.: Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0. Abschlussbericht des Arbeitskreises Industrie 4.0 (2013)
Kolozali, S., Bermudez-Edo, M., Barnaghi, P.: Stream Annotation Ontology (2016). http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao
Kolozali, S., Bermudez-Edo, M., Puschmann, D., Ganz, F., Barnaghi, P.: A knowledge-based approach for real-time IoT data stream annotation and processing. In: 2014 IEEE International Conference on Internet of Things(iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom), pp. 215–222. IEEE (2014). https://doi.org/10.1109/iThings.2014.39
Lavin, A., Ahmad, S.: Evaluating Real-Time Anomaly Detection Algorithms - The Numenta Anomaly Benchmark, pp. 38–44 (2015)
Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24(3), 45–77 (2007)
Rousopoulou, V., Nizamis, A., Vafeiadis, T., Ioannidis, D., Tzovaras, D.: Predictive maintenance for injection molding machines enabled by cognitive analytics for industry 4.0. Front. Artif. Intell. 3, 578152 (2020)
Schütze, A., Helwig, N., Schneider, T.: Sensors 4.0 – smart sensors and measurement technology enable Industry 4.0. J. Sens. Sensor Syst. 7(1), 359–371 (2018)
Stahmann, P., Rieger, B.: Requirements identification for real-time anomaly detection in industrie 4.0 machine groups: a structured literature review. In: Proceedings of the 54th Hawaii International Conference on System Sciences (2021)
Stojanovic, L., Dinic, M., Stojanovic, N., Stonjanovic, A.: Big-data- driven Anomaly Detection in Industry (4.0): an approach and a case study. In: IEEE (2016)
Sun, J., Kamiya, M., Takeuchi, S.: Introducing hierarchical clustering with real time stream reasoning into semantic-enabled IoT. In: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), pp. 540–545. IEEE (2018). https://doi.org/10.1109/COMPSAC.2018.10291
Venable, J., PriesHeje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25(1), 77–89 (2016)
Vilariño, F., Spyridonos, P., Vitrià , J., Radeva, P.: Experiments with SVM and stratified sampling with an imbalanced problem: detection of intestinal contractions. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) Pattern Recognition and Image Analysis. LNCS, vol. 3687, pp. 783–791. Springer, Heidelberg (2005). https://doi.org/10.1007/11552499_86
vom Brocke, J., Simons, A., Riemer, K., Niehaves, B., Plattfaut, R., Cleven, A.: Standing on the shoulders of giants: challenges and recommendations of literature search in information systems research. Commun. Assoc. Inf. Syst. 37, 1–9 (2015). https://doi.org/10.17705/1CAIS.03709
Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. MIS Q. 26(2), xiii–xxiii (2002)
Xie, L., et al.: Soft sensors for online steam quality measurements of OTSGs. J. Process Control 23(7), 990–1000 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Stahmann, P., Nebel, M., Rieger, B. (2023). A Real-Time Semantic Anomaly Labeler Capturing Local Data Stream Features to Distinguish Anomaly Types in Production. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13810. Springer, Cham. https://doi.org/10.1007/978-3-031-25599-1_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-25599-1_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25598-4
Online ISBN: 978-3-031-25599-1
eBook Packages: Computer ScienceComputer Science (R0)