Skip to main content

A Kernel-Based Multilayer Perceptron Framework to Identify Pathways Related to Cancer Stages

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2022)

Abstract

Standard machine learning algorithms have limited knowledge extraction capability in discriminating cancer stages based on genomic characterizations, due to the strongly correlated nature of high-dimensional genomic data. Moreover, activation of pathways plays a crucial role in the growth and progression of cancer from early-stage to late-stage. That is why we implemented a kernel-based neural network framework that integrates pathways and gene expression data using multiple kernels and discriminates early- and late-stages of cancers. Our goal is to identify the relevant molecular mechanisms of the biological processes which might be driving cancer progression. As the input of developed multilayer perceptron (MLP), we constructed kernel matrices on multiple views of expression profiles of primary tumors extracted from pathways. We used Hallmark and Pathway Interaction Database (PID) datasets to restrict the search area to interpretable solutions. We applied our algorithm to 12 cancer cohorts from the Cancer Genome Atlas (TCGA), including more than 5100 primary tumors. The results showed that our algorithm could extract meaningful and disease-specific mechanisms of cancers. We tested the predictive performance of our MLP algorithm and compared it against three existing classification algorithms, namely, random forests, support vector machines, and multiple kernel learning. Our MLP method obtained better or comparable predictive performance against these algorithms.

Our implementation of proposed algorithm in R is available at https://github.com/MSoleimanpoor/Neural-Network.git.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaur, H., Bhalla, S., Raghava, G.P.: Classification of early and late stage liver hepatocellular carcinoma patients from their genomics and epigenomics profiles. PLoS ONE 14(9), e0221476 (2019)

    Article  Google Scholar 

  2. Mokhtaridoost, M., Gönen, M.: Identifying key miRNA–mRNA regulatory modules in cancer using sparse multivariate factor regression. In: Nicosia, G., et al. (eds.) LOD 2020. LNCS, vol. 12565, pp. 422–433. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64583-0_38

    Chapter  Google Scholar 

  3. Broët, P., et al.: Identifying gene expression changes in breast cancer that distinguish early and late relapse among uncured patients. Bioinformatics 22(12), 1477–1485 (2006)

    Article  Google Scholar 

  4. Bhalla, S., et al.: Expression based biomarkers and models to classify early and late-stage samples of Papillary Thyroid Carcinoma. PLoS ONE 15(4), e0231629 (2020)

    Article  Google Scholar 

  5. Bhalla, S., et al.: Gene expression-based biomarkers for discriminating early and late stage of clear cell renal cancer. Sci. Rep. 7(1), 1–13 (2017)

    Article  Google Scholar 

  6. Ein-Dor, L., Zuk, O., Domany, E.: Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl. Acad. Sci. U.S.A. 103(15), 5923–5928 (2006)

    Article  Google Scholar 

  7. Rahimi, A., Gönen, M.: Discriminating early-and late-stage cancers using multiple kernel learning on gene sets. Bioinformatics 34(13), i412–i421 (2018)

    Article  Google Scholar 

  8. Rahimi, A., Gönen, M.: A multitask multiple kernel learning formulation for discriminating early-and late-stage cancers. Bioinformatics (2020)

    Google Scholar 

  9. Kumar, R., et al.: Gene expression-based supervised classification models for discriminating early-and late-stage prostate cancer. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci., 1–2 (2019)

    Google Scholar 

  10. Ma, B., et al.: Diagnostic classification of cancers using extreme gradient boosting algorithm and multi-omics data. Comput. Biol. Med. 121, 103761 (2020)

    Article  Google Scholar 

  11. Saabith, A.L.S., Sundararajan, E., Bakar, A.A.: Comparative study on different classification techniques for breast cancer dataset. Int. J. Comput. Sci. Mob. Comput. 3(10), 185–191 (2014)

    Google Scholar 

  12. Seo, H., Cho, D.-H.: Cancer-related gene signature selection based on boosted regression for multilayer perceptron. IEEE Access 8, 64 992–65 004 (2020)

    Google Scholar 

  13. Pati, J.: Gene expression analysis for early lung cancer prediction using machine learning techniques: an eco-genomics approach. IEEE Access 7, 4232–4238 (2018)

    Article  Google Scholar 

  14. Chaubey, V., Nair, M.S., Pillai, G.: Gene expression prediction using a deep 1D convolution neural network. In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1383–1389. IEEE (2019)

    Google Scholar 

  15. Xie, R., et al.: A predictive model of gene expression using a deep learning framework. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 676–681. IEEE (2016)

    Google Scholar 

  16. Mojarad, S.A., et al.: Breast cancer prediction and cross validation using multilayer perceptron neural networks. In: Communication Systems, Networks and Digital Signal Processing (CSNDSP), pp. 760–764. IEEE (2010)

    Google Scholar 

  17. Schaefer, C.F., et al.: PID: the pathway interaction database. Nucleic Acids Res. 37(suppl_1), D674–D679 (2009)

    Google Scholar 

  18. Liberzon, A., et al.: The molecular signatures database hallmark gene set collection. Cell Syst. 1(6), 417–425 (2015)

    Article  Google Scholar 

  19. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). http://tensorflow.org/

  20. Chollet, F., et al.: Keras (2015). https://keras.io

  21. Bergers, G., Benjamin, L.E.: Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3(6), 401–410 (2003)

    Article  Google Scholar 

  22. Chiang, J.Y.L.: Bile acid metabolism and signaling. Compr. Physiol. 3(3), 1191–1212 (2013)

    Article  Google Scholar 

  23. Kotha, P.L., et al.: Adenovirus entry from the apical surface of polarized epithelia is facilitated by the host innate immune response. PLoS Pathog. 11(3), e1004696 (2015)

    Article  Google Scholar 

  24. Zeitouni, N.E., Chotikatum, S., von Köckritz-Blickwede, M., Naim, H.Y.: The impact of hypoxia on intestinal epithelial cell functions: consequences for invasion by bacterial pathogens. Mol. Cellular Pediatr. 3(1), 1–9 (2016). https://doi.org/10.1186/s40348-016-0041-y

    Article  Google Scholar 

  25. Branzei, D., Foiani, M.: Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9(4), 297–308 (2008)

    Article  Google Scholar 

  26. Blais, A., Dynlacht, B.D.: E2F-associated chromatin modifiers and cell cycle control. Curr. Opin. Cell Biol. 19(6), 658–662 (2007)

    Article  Google Scholar 

  27. Zhao, L., et al.: Identification of a novel cell cycle-related gene signature predicting survival in patients with gastric cancer. J. Cell. Physiol. 234(5), 6350–6360 (2019)

    Article  Google Scholar 

  28. Palaniappan, M., Menon, B., Menon, K.: Stimulatory effect of insulin on theca-interstitial cell proliferation and cell cycle regulatory proteins through MTORC1 dependent pathway. Mol. Cell. Endocrinol. 366(1), 81–89 (2013)

    Article  Google Scholar 

  29. Melo, S.A., et al.: Glypican1 identifies cancer exosomes and facilitates early detection of cancer. Nature 523(7559), 177 (2015)

    Article  Google Scholar 

  30. Kandikattu, H.K., Venkateshaiah, S.U., Mishra, A.: Synergy of interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases. Cytokine Growth Factor Rev. 47, 83–98 (2019)

    Article  Google Scholar 

  31. Xia, L., et al.: Role of the NF\(\kappa \)B-signaling pathway in cancer. OncoTargets Ther. 11, 2063 (2018)

    Article  Google Scholar 

  32. Gupta, S.K., et al.: Integrin \(\alpha \)9\(\beta \)1 promotes malignant tumor growth and metastasis by potentiating epithelial-mesenchymal transition. Oncogene 32(2), 141–150 (2013)

    Article  Google Scholar 

  33. Dard, L., et al.: RAS signalling in energy metabolism and rare human diseases. Biochim. Biophys. Acta, Bioenerg. 1859(9), 845–867 (2018)

    Article  Google Scholar 

  34. Chung, J.H.: The role of DNA-PK in aging and energy metabolism. FEBS J. 285(11), 1959–1972 (2018)

    Article  Google Scholar 

  35. Mo, Y., et al.: The role of WNT signaling pathway in tumor metabolic reprogramming. J. Cancer 10(16), 3789 (2019)

    Article  Google Scholar 

  36. Xia, Y., Jiang, L., Zhong, T.: The role of HIF-1\(\alpha \) in chemo-/radioresistant tumors. OncoTargets Ther. 11, 3003 (2018)

    Article  Google Scholar 

  37. Wild, J.R., et al.: Neuropilins: expression and roles in the epithelium. Int. J. Exp. Pathol. 93(2), 81–103 (2012)

    Article  Google Scholar 

  38. Joly, D., et al.: \(\beta \)4 integrin and laminin 5 are aberrantly expressed in polycystic kidney disease: role in increased cell adhesion and migration. Am. J. Pathol. 163(5), 1791–1800 (2003)

    Article  Google Scholar 

  39. Bai, H., et al.: Integrated genomic characterization of idh1-mutant glioma malignant progression. NAT 48(1), 59–66 (2016)

    Google Scholar 

  40. Chen, C., et al.: Analysis of the expression of cell division cycle-associated genes and its prognostic significance in human lung carcinoma: a review of the literature databases. Biomed Res. Int. 2020 (2020)

    Google Scholar 

  41. Ishwaran, H., Kogalur, U.: Random forests for survival, regression, and classification (RF-SRC), R package version 2.5. 1 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Mokhtaridoost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soleimanpoor, M., Mokhtaridoost, M., Gönen, M. (2023). A Kernel-Based Multilayer Perceptron Framework to Identify Pathways Related to Cancer Stages. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13810. Springer, Cham. https://doi.org/10.1007/978-3-031-25599-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25599-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25598-4

  • Online ISBN: 978-3-031-25599-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics