Skip to main content

Collision-Resistant and Pseudorandom Hash Function Using Tweakable Block Cipher

  • Conference paper
  • First Online:
Information Security Applications (WISA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13720))

Included in the following conference series:

Abstract

This paper presents a method to construct a keyed Merkle-Damgård hash function satisfying collision resistance and the pseudorandom function property using a tweakable block cipher in the TWEAKEY framework. Its compression function adopts double-block construction to achieve sufficient level of collision resistance. Not only does the padding of the proposed keyed hash function not employ Merkle-Damgård strengthening, but it is also not injective. Due to the novel feature, the proposed keyed hash function achieves the minimum number of calls to its compression function for any message input. The proposed keyed hash function is shown to be optimally collision-resistant in the ideal cipher model. It is also shown to be a secure pseudorandom function if the underlying tweakable block cipher in the TWEAKEY framework is a secure tweakable pseudorandom permutation in two tweakey strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_1

    Chapter  Google Scholar 

  2. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the cascade construction and its concrete security. In: Proceedings of the 37th IEEE Symposium on Foundations of Computer Science, pp. 514–523 (1996)

    Google Scholar 

  3. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_31

    Chapter  Google Scholar 

  4. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and the EMD transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 299–314. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_20

    Chapter  Google Scholar 

  5. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple encryption. Cryptology ePrint Archive, Report 2004/331 (2006). http://eprint.iacr.org/

  6. Boneh, D., Eskandarian, S., Fisch, B.: Post-quantum EPID signatures from symmetric primitives. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 251–271. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_13

    Chapter  Google Scholar 

  7. Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_39

    Chapter  Google Scholar 

  8. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: from invisible salamanders to encryptment. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 155–186. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_6

    Chapter  Google Scholar 

  9. FIPS PUB 198-1: The keyed-hash message authentication code (HMAC) (2008)

    Google Scholar 

  10. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986). https://doi.org/10.1145/6490.6503

    Article  MathSciNet  MATH  Google Scholar 

  11. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 66–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_3

    Chapter  Google Scholar 

  12. Hirose, S.: Some plausible constructions of double-block-length hash functions. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006). https://doi.org/10.1007/11799313_14

    Chapter  Google Scholar 

  13. Hirose, S.: Collision-resistant and pseudorandom function based on Merkle-Damgård hash function. In: Park, J.H., Seo, S. (eds.) ICISC 2021. LNCS, vol. 13218, pp. 325–338. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-08896-4_17

    Chapter  Google Scholar 

  14. Hirose, S., Ideguchi, K., Kuwakado, H., Owada, T., Preneel, B., Yoshida, H.: An AES based 256-bit hash function for lightweight applications: Lesamnta-LW. IEICE Trans. Fundam. E95-A(1), 89–99 (2012)

    Google Scholar 

  15. Hirose, S., Park, J.H., Yun, A.: A simple variant of the Merkle-Damgård scheme with a permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 113–129. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_7

    Chapter  Google Scholar 

  16. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_2

    Chapter  Google Scholar 

  17. Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. Cryptology ePrint Archive, Report 2002/180 (2002). https://ia.cr/2002/180

  18. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39887-5_11

    Chapter  Google Scholar 

  19. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_15

    Chapter  Google Scholar 

  20. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_40

    Chapter  Google Scholar 

  21. NIST Special Publication 800-38B: Recommendation for block cipher modes of operation: The CMAC mode for authentication (2005)

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP21K11885.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoichi Hirose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hirose, S. (2023). Collision-Resistant and Pseudorandom Hash Function Using Tweakable Block Cipher. In: You, I., Youn, TY. (eds) Information Security Applications. WISA 2022. Lecture Notes in Computer Science, vol 13720. Springer, Cham. https://doi.org/10.1007/978-3-031-25659-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25659-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25658-5

  • Online ISBN: 978-3-031-25659-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics