Skip to main content

Albumin-Based Optical and Electrochemical Biosensors for PFAS Detection: A Comparison

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 999))

Included in the following conference series:

  • 405 Accesses

Abstract

The widespread industrial use of per- and polyfluoroalkyl substances (PFAS) have engendered the release of these manmade chemicals in the environment with harmful effects on animal and human health. To monitor PFAS levels in drinking waters, sensitive and versatile sensing strategies are urgently required. Since many perfluoroalkyl carboxylic acids, such as perfluorooctanoic acid (PFOA), are fatty acid-mimic, delipidated human serum albumin (HSA) can be applied as biorecognition element for the design of novel PFAS sensors. Here, two albumin-based biosensing strategies are described and compared: i) a lossy mode resonance (LMR) fiber optic one and ii) an impedimetric portable one developed on screen-printed electrodes. In both biosensing platforms, HSA was covalently immobilized via EDC/NHS chemistry using the carboxylic moieties of the polymeric layers previously deposited at the transducer surface. Afterwards, the conformational changes related to the formation of HSA/PFOA complex were followed considering: i) the LMR spectral shifts for the optical platform and ii) the changes of absolute impedance for the impedimetric one. The performance and future developments of both PFOA biosensors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meegoda, J.N., Kewalramani, J.A., Li, B., Marsh, R.W.: A review of the applications, environmental release, and remediation technologies of per-and polyfluoroalkyl substances. Int. J. Environ. Res. Public Health 17, 1–26 (2020). https://doi.org/10.3390/ijerph17218117

    Article  Google Scholar 

  2. Sinclair, G.M., Long, S.M., Jones, O.A.H.: What are the effects of PFAS exposure at environmentally relevant concentrations? Chemosphere 258, 127340 (2020). https://doi.org/10.1016/j.chemosphere.2020.127340

    Article  Google Scholar 

  3. Al Amin, M., et al.: Recent advances in the analysis of per- and polyfluoroalkyl substances (PFAS)—A review. Environ. Technol. Innov. 19, 100879 (2020). https://doi.org/10.1016/j.eti.2020.100879

  4. Koch, A., Aro, R., Wang, T., Yeung, L.W.Y.: Towards a comprehensive analytical workflow for the chemical characterisation of organofluorine in consumer products and environmental samples. TrAC - Trends Anal. Chem. 123, 115423 (2020). https://doi.org/10.1016/j.trac.2019.02.024

    Article  Google Scholar 

  5. Feng, H., Ruan, Y., Zhang, K., Lam, P.K.S.: Current analytical methodologies and gaps for per- and polyfluoroalkyl substances determination in the marine environment. TrAC - Trends Anal. Chem. 121, 115372 (2019). https://doi.org/10.1016/j.trac.2018.12.026

    Article  Google Scholar 

  6. Jia, S., Marques Dos Santos, M., Li, C., Snyder, S.A.: Recent advances in mass spectrometry analytical techniques for per- and polyfluoroalkyl substances (PFAS). Anal. Bioanal. Chem. 414, 2795–2807 (2022). https://doi.org/10.1007/s00216-022-03905-y

    Article  Google Scholar 

  7. Dodds, J.N., Hopkins, Z.R., Knappe, D.R.U., Baker, E.S.: Rapid characterization of per- and polyfluoroalkyl substances (PFAS) by ion mobility spectrometry–mass spectrometry (IMS-MS). Anal. Chem. 92, 4427–4435 (2020). https://doi.org/10.1021/acs.analchem.9b05364

    Article  Google Scholar 

  8. Fiedler, H., van der Veen, I., de Boer, J.: Global interlaboratory assessments of perfluoroalkyl substances under the Stockholm Convention on persistent organic pollutants. TrAC - Trends Anal. Chem. 124, 115459 (2020). https://doi.org/10.1016/j.trac.2019.03.023

    Article  Google Scholar 

  9. Barceló, D., Ruan, T.: Challenges and perspectives on the analysis of traditional perfluoroalkyl substances and emerging alternatives. TrAC - Trends Anal. Chem. 121, 2–3 (2019). https://doi.org/10.1016/j.trac.2019.07.016

    Article  Google Scholar 

  10. Liu, X., Fang, M., Xu, F., Chen, D.: Characterization of the binding of per- and poly-fluorinated substances to proteins: a methodological review. TrAC - Trends Anal. Chem. 116, 177–185 (2019). https://doi.org/10.1016/j.trac.2019.05.017

    Article  Google Scholar 

  11. Maso, L., et al.: Unveiling the binding mode of perfluorooctanoic acid to human serum albumin. Protein Sci. 30, 830–841 (2021). https://doi.org/10.1002/pro.4036

    Article  Google Scholar 

  12. Daems, E., et al.: Native mass spectrometry for the design and selection of protein bioreceptors for perfluorinated compounds. Analyst 146, 2065–2073 (2021). https://doi.org/10.1039/D0AN02005B

    Article  Google Scholar 

  13. Han, X., Snow, T.A., Kemper, R.A., Jepson, G.W.: Binding of perfluorooctanoic acid to rat and human plasma proteins. Chem. Res. Toxicol. 16, 775–781 (2003). https://doi.org/10.1021/tx034005w

    Article  Google Scholar 

  14. Chi, Q., Li, Z., Huang, J., Ma, J., Wang, X.: Interactions of perfluorooctanoic acid and perfluorooctanesulfonic acid with serum albumins by native mass spectrometry, fluorescence and molecular docking. Chemosphere 198, 442–449 (2018). https://doi.org/10.1016/j.chemosphere.2018.01.152

    Article  Google Scholar 

  15. Chen, Y.M., Guo, L.H.: Fluorescence study on site-specific binding of perfluoroalkyl acids to human serum albumin. Arch. Toxicol. 83, 255–261 (2009). https://doi.org/10.1007/s00204-008-0359-x

    Article  Google Scholar 

  16. Moro, G., et al.: Covalent immobilization of delipidated human serum albumin on poly (pyrrole-2-carboxylic) acid film for the impedimetric detection of perfluorooctanoic acid. Bioelectrochemistry 134, 107540 (2020). https://doi.org/10.1016/j.bioelechem.2020.107540

    Article  Google Scholar 

  17. Moro, G., De Wael, K., Moretto, L.M.: Challenges in the electrochemical (bio)sensing of nonelectroactive food and environmental contaminants. Curr. Opin. Electrochem. 16, 57–65 (2019). https://doi.org/10.1016/j.coelec.2019.04.019

    Article  Google Scholar 

  18. Wu, C.-M., Lin, L.-Y.: Utilization of albumin-based sensor chips for the detection of metal content and characterization of metal–protein interaction by surface plasmon resonance. Sens. Actuators B Chem. 110, 231–238 (2005). https://doi.org/10.1016/j.snb.2005.01.047

    Article  Google Scholar 

  19. Tang, Z., Fu, Y., Ma, Z.: Bovine serum albumin as an effective sensitivity enhancer for peptide-based amperometric biosensor for ultrasensitive detection of prostate specific antigen. Biosens. Bioelectron. 94, 394–399 (2017). https://doi.org/10.1016/j.bios.2017.03.030

    Article  Google Scholar 

  20. He, C., et al.: A highly sensitive glucose biosensor based on gold nanoparticles/bovine serum albumin/Fe3O4 biocomposite nanoparticles. Electrochim. Acta 222, 1709–1715 (2016). https://doi.org/10.1016/j.electacta.2016.11.162

    Article  Google Scholar 

  21. Wang, R., Zhou, X., Zhu, X., Yang, C., Liu, L., Shi, H.: Isoelectric bovine serum albumin: robust blocking agent for enhanced performance in optical-fiber based DNA sensing. ACS Sens. 2, 257–262 (2017). https://doi.org/10.1021/acssensors.6b00746

    Article  Google Scholar 

  22. Riquelme, M.V., Zhao, H., Srinivasaraghavan, V., Pruden, A., Vikesland, P., Agah, M.: Optimizing blocking of nonspecific bacterial attachment to impedimetric biosensors. Sens. Bio-Sens. Res. 8, 47–54 (2016). https://doi.org/10.1016/j.sbsr.2016.04.003

    Article  Google Scholar 

  23. Liu, Y.-H., Li, H.-N., Chen, W., Liu, A.-L., Lin, X.-H., Chen, Y.-Z.: Bovine serum albumin-based probe carrier platform for electrochemical DNA biosensing. Anal. Chem. 85, 273–277 (2013). https://doi.org/10.1021/ac303397f

    Article  Google Scholar 

  24. He, Y., et al.: Highly reproducible and sensitive electrochemiluminescence biosensors for HPV detection based on bovine serum albumin carrier platforms and hyperbranched rolling circle amplification. ACS Appl. Mater. Interf. 13, 298–305 (2021). https://doi.org/10.1021/acsami.0c20742

    Article  Google Scholar 

  25. Kłos-Witkowska, A., Akhmetov, B., Zhumangalieva, N., Karpinskyi, V., Gancarczyk, T.: Bovine Serum Albumin stability in the context of biosensors. In: 2016 16th International Conference on Control, Automation and Systems, pp. 976–980 (2016). https://doi.org/10.1109/ICCAS.2016.7832427

  26. Daniels, J.S., Pourmand, N.: Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19, 1239–1257 (2007). https://doi.org/10.1002/elan.200603855

    Article  Google Scholar 

  27. Jiao, L., Zhong, N., Zhao, X., Ma, S., Fu, X., Dong, D.: Recent advances in fiber-optic evanescent wave sensors for monitoring organic and inorganic pollutants in water. TrAC Trends Anal. Chem. 127, 115892 (2020). https://doi.org/10.1016/j.trac.2020.115892

    Article  Google Scholar 

  28. Shukla, S.K., Kushwaha, C.S., Guner, T., Demir, M.M.: Chemically modified optical fibers in advanced technology: an overview. Opt. Laser Technol. 115, 404–432 (2019). https://doi.org/10.1016/j.optlastec.2019.02.025

    Article  Google Scholar 

  29. Chiavaioli, F., Janer, D.: Fiber optics sensing with lossy mode resonances: applications and perspectives. J. Light. Technol. 8724, 3855–3870 (2021). https://doi.org/10.1109/JLT.2021.3052137

    Article  Google Scholar 

  30. Chiavaioli, F.: Recent development of resonance-based optical sensors and biosensors. Optics 1, 255–258 (2020). https://doi.org/10.3390/opt1030019

    Article  Google Scholar 

  31. Li, Z., Yang, X., Zhu, H., Chiavaioli, F.: Sensing performance of fiber-optic combs tuned by nanometric films: new insights and limits. IEEE Sens. J. 21, 13305–13315 (2021). https://doi.org/10.1109/JSEN.2021.3068445

    Article  Google Scholar 

  32. Del Villar, I., et al.: Optical sensors based on lossy-mode resonances. Sens. Actuators B Chem. 240, 174–185 (2017). https://doi.org/10.1016/j.snb.2016.08.126

    Article  Google Scholar 

  33. Del Villar, I., et al.: Design rules for lossy mode resonance based sensors. Appl. Opt. 51, 4298–4307 (2012). https://doi.org/10.1364/AO.51.004298

    Article  Google Scholar 

  34. Kosiel, K., Koba, M., Masiewicz, M., Śmietana, M.: Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique. Opt. Laser Technol. 102, 213–221 (2018). https://doi.org/10.1016/j.optlastec.2018.01.002

    Article  Google Scholar 

  35. Chiavaioli, F., et al.: Femtomolar Detection by nanocoated fiber label-free biosensors. ACS Sens. 3, 936–943 (2018). https://doi.org/10.1021/acssensors.7b00918

    Article  Google Scholar 

  36. Schubert, S.M., et al.: Ultra-sensitive protein detection via Single Molecule Arrays towards early stage cancer monitoring. Sci. Rep. 5, 11034 (2015). https://doi.org/10.1038/srep11034

    Article  Google Scholar 

  37. Peltomaa, R., Glahn-Martínez, B., Benito-Peña, E., Moreno-Bondi, M.C.: Optical biosensors for label-free detection of small molecules. Sensors 18, 4126 (2018). https://doi.org/10.3390/s18124126

    Article  Google Scholar 

  38. Guan, J.-G., Miao, Y.-Q., Zhang, Q.-J.: Impedimetric biosensors. J. Biosci. Bioeng. 97, 219–226 (2004). https://doi.org/10.1016/S1389-1723(04)70195-4

    Article  Google Scholar 

  39. Yang, L., Guiseppi-Elie, A.: Impedimetric biosensors for nano- and microfluidics. In: Li, D. (ed.) Encyclopedia of Microfluidics and Nanofluidics, pp. 811–823. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-48998-8_686

    Chapter  Google Scholar 

  40. VandeVondele, S., Vörös, J., Hubbell, J.A.: RGD-grafted poly-l-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol. Bioeng. 82, 784–790 (2003). https://doi.org/10.1002/bit.10625

    Article  Google Scholar 

  41. Frutiger, A., Tanno, A., Hwu, S., Tiefenauer, R.F., Vörös, J., Nakatsuka, N.: Nonspecific binding—Fundamental concepts and consequences for biosensing applications. Chem. Rev. 121, 8095–8160 (2021). https://doi.org/10.1021/acs.chemrev.1c00044

    Article  Google Scholar 

  42. Mahato, K., Kumar, A., Maurya, P.K., Chandra, P.: Shifting paradigm of cancer diagnoses in clinically relevant samples based on miniaturized electrochemical nanobiosensors and microfluidic devices. Biosens. Bioelectron. 100, 411–428 (2018). https://doi.org/10.1016/j.bios.2017.09.003

    Article  Google Scholar 

  43. Zhang, D., Liu, Q.: Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 75, 273–284 (2016). https://doi.org/10.1016/j.bios.2015.08.037

    Article  Google Scholar 

  44. Zamfir, L.-G., Puiu, M., Bala, C.: Advances in electrochemical impedance spectroscopy detection of endocrine disruptors. Sensors 20, 6443 (2020). https://doi.org/10.3390/s20226443

    Article  Google Scholar 

  45. Clark, R.B., Dick, J.E.: Towards deployable electrochemical sensors for per- and polyfluoroalkyl substances (PFAS). Chem. Commun. 57, 8121–8130 (2021). https://doi.org/10.1039/D1CC02641K

    Article  Google Scholar 

  46. Cheng, Y.H., et al.: Metal–organic framework-based microfluidic impedance sensor platform for ultrasensitive detection of perfluorooctanesulfonate. ACS Appl. Mater. Interf. 12, 10503–10514 (2020). https://doi.org/10.1021/acsami.9b22445

    Article  Google Scholar 

  47. Moro, G., et al.: Nanocoated fiber label-free biosensing for perfluorooctanoic acid detection by lossy mode resonance. Results Opt. 5, 100123 (2021). https://doi.org/10.1016/j.rio.2021.100123

    Article  Google Scholar 

  48. Zubiate, P., et al.: Fiber-based early diagnosis of venous thromboembolic disease by label-free D-dimer detection. Biosens. Bioelectron. X 2, 100026 (2019). https://doi.org/10.1016/j.biosx.2019.100026

    Article  Google Scholar 

  49. Nazri, N.A.A., Azeman, N.H., Luo, Y., Bakar, A.A.A.: Carbon quantum dots for optical sensor applications: a review. Opt. Laser Technol. 139, 106928 (2021). https://doi.org/10.1016/j.optlastec.2021.106928

    Article  Google Scholar 

  50. Trono, C., Baldini, F., Brenci, M., Chiavaioli, F., Mugnaini, M.: Flow cell for strain- and temperature-compensated refractive index measurements by means of cascaded optical fibre long period and Bragg gratings. Meas. Sci. Technol. 22, 075204 (2011). https://doi.org/10.1088/0957-0233/22/7/075204

    Article  Google Scholar 

  51. Chiavaioli, F., Gouveia, C.A.J., Jorge, P.A.S., Baldini, F.: Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors. Biosensor 7, 23 (2017). https://doi.org/10.3390/bios7020023

    Article  Google Scholar 

  52. Boukamp, B.A.: Practical application of the Kramers-Kronig transformation on impedance measurements in solid state electrochemistry. Solid State Ionics 62, 131–141 (1993). https://doi.org/10.1016/0167-2738(93)90261-Z

    Article  Google Scholar 

  53. Agarwal, P.: Application of measurement models to impedance spectroscopy. J. Electrochem. Soc. 142, 4159 (1995). https://doi.org/10.1149/1.2048479

    Article  Google Scholar 

  54. Casero, E., Parra-Alfambra, A.M., Petit-Domínguez, M.D., Pariente, F., Lorenzo, E., Alonso, C.: Differentiation between graphene oxide and reduced graphene by electrochemical impedance spectroscopy (EIS). Electrochem. Commun. 20, 63–66 (2012). https://doi.org/10.1016/j.elecom.2012.04.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Giannetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moro, G. et al. (2023). Albumin-Based Optical and Electrochemical Biosensors for PFAS Detection: A Comparison. In: Di Francia, G., Di Natale, C. (eds) Sensors and Microsystems. AISEM 2022. Lecture Notes in Electrical Engineering, vol 999. Springer, Cham. https://doi.org/10.1007/978-3-031-25706-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25706-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25705-6

  • Online ISBN: 978-3-031-25706-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics