Skip to main content

Enhancing Privacy in Federated Learning with Local Differential Privacy for Email Classification

  • Conference paper
  • First Online:
Data Privacy Management, Cryptocurrencies and Blockchain Technology (DPM 2022, CBT 2022)

Abstract

With federated learning, information among different clients can be accessed to train a central model that aims for an optimal use of data while keeping the clients’ data local and private. But since its emergence in 2017, several threats such as gradient attacks or model poisoning attacks against federated learning have been identified. Therefore, federated learning cannot be considered as stand alone privacy preserving machine learning technique. Thus, we analyse how and where local differential privacy can compensate for the drawbacks of federated learning while keeping its advantage of combining data from different sources. In this work, we analyse the different communication channels and entities in the federated learning architecture that may be attacked or try to reveal data from other entities. Thereby, we evaluate where local differential privacy is helpful. Finally, for our spam and ham email classification model with local differential privacy, we find that setting a local threshold of F1-Score on the clients’ level can reduce the consumption of privacy budget over several rounds, and decrease the training time. Moreover, we find that for the central model a significantly higher F1-Score than those set on the local level for the clients can be achieved.

This work was supported by the European Union’s Horizon 2020 Research and Innovation Program through the Project CyberSec4Europe under Agreement 830929.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://nlp.cs.aueb.gr/software_and_datasets/Enron-Spam/index.html.

  2. 2.

    https://github.com/supaboy1999/federated-spam-ham.

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)

    Google Scholar 

  2. Amjad, M., Voronkov, I., Saenko, A., Gelbukh, A.: Comparison of text classification methods using deep learning neural networks. In: Proceedings of the 20th International Conference on Computational Linguistics and Intelligent Text Processing (CICLing) (2019)

    Google Scholar 

  3. Awan, S., Luo, B., Li, F.: CONTRA: defending against poisoning attacks in federated learning. In: Bertino, E., Shulman, H., Waidner, M. (eds.) ESORICS 2021. LNCS, vol. 12972, pp. 455–475. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88418-5_22

    Chapter  Google Scholar 

  4. Basu, P., Roy, T.S., Naidu, R., Muftuoglu, Z.: Privacy enabled financial text classification using differential privacy and federated learning. arXiv preprint arXiv:2110.01643 (2021)

  5. Bhowmick, A., Hazarika, S.M.: E-mail spam filtering: a review of techniques and trends. In: Kalam, A., Das, S., Sharma, K. (eds.) Advances in Electronics, Communication and Computing. LNEE, vol. 443, pp. 583–590. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-4765-7_61

    Chapter  Google Scholar 

  6. Dada, E.G., Bassi, J.S., Chiroma, H., Adetunmbi, A.O., Ajibuwa, O.E., et al.: Machine learning for email spam filtering: review, approaches and open research problems. Heliyon 5(6), e01802 (2019)

    Article  Google Scholar 

  7. Dong, Y., Chen, X., Li, K., Wang, D., Zeng, S.: FLOD: oblivious defender for private Byzantine-robust federated learning with dishonest-majority. Cryptology ePrint Archive (2021)

    Google Scholar 

  8. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  9. Geiping, J., Bauermeister, H., Dröge, H., Moeller, M.: Inverting gradients-how easy is it to break privacy in federated learning? In: Advances in Neural Information Processing Systems, vol. 33, pp. 16937–16947 (2020)

    Google Scholar 

  10. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: a client level perspective. arXiv preprint arXiv:1712.07557 (2017)

  11. Jain, G., Sharma, M., Agarwal, B.: Optimizing semantic LSTM for spam detection. Int. J. Inf. Technol. 11(2) (2019)

    Google Scholar 

  12. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

  13. Löbner, S., Tesfay, W.B., Nakamura, T., Pape, S.: Explainable machine learning for default privacy setting prediction. IEEE Access 9, 63700–63717 (2021)

    Article  Google Scholar 

  14. Löbner, S., Tronnier, F., Pape, S., Rannenberg, K.: Comparison of de-identification techniques for privacy preserving data analysis in vehicular data sharing. In: Computer Science in Cars Symposium, pp. 1–11 (2021)

    Google Scholar 

  15. Makkar, A., Ghosh, U., Rawat, D.B., Abawajy, J.: FedLearnSP: preserving privacy and security using federated learning and edge computing. IEEE Consum. Electron. Mag. 11, 21–27 (2021)

    Article  Google Scholar 

  16. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  17. Metsis, V., Androutsopoulos, I., Paliouras, G.: Spam filtering with Naive Bayes-which Naive Bayes? In: CEAS, Mountain View, CA, vol. 17 (2006)

    Google Scholar 

  18. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  19. Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. preprint arXiv:2010.16061 (2020)

  20. Tanuwidjaja, H.C., Choi, R., Baek, S., Kim, K.: Privacy-preserving deep learning on machine learning as a service-a comprehensive survey. IEEE Access 8, 167425–167447 (2020)

    Article  Google Scholar 

  21. Thapa, C., et al.: FedEmail: performance measurement of privacy-friendly phishing detection enabled by federated learning. arXiv - CS - Machine Learning (2020)

    Google Scholar 

  22. Tolpegin, V., Truex, S., Gursoy, M.E., Liu, L.: Data poisoning attacks against federated learning systems. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12308, pp. 480–501. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58951-6_24

    Chapter  Google Scholar 

  23. Triastcyn, A., Faltings, B.: Federated learning with Bayesian differential privacy. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 2587–2596. IEEE (2019)

    Google Scholar 

  24. Tronnier, F., Pape, S., Löbner, S., Rannenberg, K.: A discussion on ethical cybersecurity issues in digital service chains. In: Kołodziej, J., Repetto, M., Duzha, A. (eds.) Cybersecurity of Digital Service Chains. LNCS, vol. 13300, pp. 222–256. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-04036-8_10

    Chapter  Google Scholar 

  25. Wei, K., et al.: Federated learning with differential privacy: algorithms and performance analysis. IEEE Trans. Inf. Forensics Secur. 15, 3454–3469 (2020)

    Article  Google Scholar 

  26. Wei, W., et al.: A framework for evaluating client privacy leakages in federated learning. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12308, pp. 545–566. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58951-6_27

    Chapter  Google Scholar 

  27. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  28. Yousefpour, A., et al.: Opacus: user-friendly differential privacy library in PyTorch. arXiv preprint arXiv:2109.12298 (2021)

  29. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Löbner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Löbner, S., Gogov, B., Tesfay, W.B. (2023). Enhancing Privacy in Federated Learning with Local Differential Privacy for Email Classification. In: Garcia-Alfaro, J., Navarro-Arribas, G., Dragoni, N. (eds) Data Privacy Management, Cryptocurrencies and Blockchain Technology. DPM CBT 2022 2022. Lecture Notes in Computer Science, vol 13619. Springer, Cham. https://doi.org/10.1007/978-3-031-25734-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25734-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25733-9

  • Online ISBN: 978-3-031-25734-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics