Skip to main content

Verifiable External Blockchain Calls: Towards Removing Oracle Input Intermediaries

  • Conference paper
  • First Online:
Data Privacy Management, Cryptocurrencies and Blockchain Technology (DPM 2022, CBT 2022)

Abstract

It is widely accepted that blockchain and other distributed ledgers cannot initiate requests for input from external systems and are reliant on oracles to provide such inputs. This belief is founded on the fact that each node has to reach a deterministic state. In this paper we show that this belief is a preconceived one by demonstrating a method that supports calls to external systems initiated from the blockchain itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://wicg.github.io/webpackage/draft-yasskin-http-origin-signed-responses.html.

  2. 2.

    We use \(\oplus \) to represent function overloading.

  3. 3.

    https://github.com/ethereum/go-ethereum.

  4. 4.

    Indeed, this means that in the prototype it is not possible to make use of a PUSH32 instruction for data that starts with the string “http”, however this does not impact the prototype’s purpose to evaluate the proposed technique.

  5. 5.

    Code from https://solidity-by-example.org/signature/ to verify an ECDSA signature was executed in order to retrieve gas costs. The cost of the verification only was calculated by first executing a function call and then adding in a call to verify a signature, and the difference between the two was used to calculate the signature verification gas cost.

References

  1. Adler, J., Berryhill, R., Veneris, A., Poulos, Z., Veira, N., Kastania, A.: Astraea: a decentralized blockchain oracle. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1145–1152. IEEE (2018)

    Google Scholar 

  2. Caldarelli, G.: Real-world blockchain applications under the lens of the oracle problem. a systematic literature review. In: 2020 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD), pp. 1–6 (2020). https://doi.org/10.1109/ICTMOD49425.2020.9380598

  3. Ellis, S., Juels, A., Nazarov, S.: Chainlink: a decentralized oracle network (2017). White paper (2017)

    Google Scholar 

  4. Ellul, J., Pace, G.J.: Towards external calls for blockchain and distributed ledger technology. arXiv preprint arXiv:2105.10399 (2021)

  5. Gatteschi, V., Lamberti, F., Demartini, C., Pranteda, C., Santamaría, V.: To blockchain or not to blockchain: that is the question. IT Prof. 20(2), 62–74 (2018). https://doi.org/10.1109/MITP.2018.021921652

    Article  Google Scholar 

  6. Lin, S.Y., Zhang, L., Li, J., Ji, L.l., Sun, Y.: A survey of application research based on blockchain smart contract. Wireless Netw. 28(2), 635–690 (2022)

    Google Scholar 

  7. Liu, X., Muhammad, K., Lloret, J., Chen, Y.W., Yuan, S.M.: Elastic and cost-effective data carrier architecture for smart contract in blockchain. Future Gener. Comput. Syst. 100, 590–599 (2019). https://doi.org/10.1016/j.future.2019.05.042, https://www.sciencedirect.com/science/article/pii/S0167739X18328334

  8. Marchesi, L., Marchesi, M., Tonelli, R.: ABCDE-agile block chain DApp engineering. Blockchain: Res. Appl. 1(1), 100002 (2020). https://doi.org/10.1016/j.bcra.2020.100002. https://www.sciencedirect.com/science/article/pii/S2096720920300026

  9. Marchesi, M., Marchesi, L., Tonelli, R.: An agile software engineering method to design blockchain applications. In: Proceedings of the 14th Central and Eastern European Software Engineering Conference Russia, pp. 1–8 (2018)

    Google Scholar 

  10. Mekouar, L., Iraqi, Y., Damaj, I., Naous, T.: A survey on blockchain-based recommender systems: integration architecture and taxonomy. Comput. Commun. 187, 1–19 (2022)

    Article  Google Scholar 

  11. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_21

    Chapter  Google Scholar 

  12. Rimba, P., Tran, A.B., Weber, I., Staples, M., Ponomarev, A., Xu, X.: Comparing blockchain and cloud services for business process execution. In: 2017 IEEE International Conference on Software Architecture, ICSA 2017, Gothenburg, Sweden, 3–7 April 2017, pp. 257–260. IEEE Computer Society (2017). https://doi.org/10.1109/ICSA.2017.44

  13. Sankar, L.S., Sindhu, M., Sethumadhavan, M.: Survey of consensus protocols on blockchain applications. In: 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 1–5. IEEE (2017)

    Google Scholar 

  14. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: Untrusted business process monitoring and execution using blockchain. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_19

    Chapter  Google Scholar 

  15. Xu, X., Pautasso, C., Zhu, L., Lu, Q., Weber, I.: A pattern collection for blockchain-based applications. In: Proceedings of the 23rd European Conference on Pattern Languages of Programs, EuroPLoP 2018, Irsee, Germany, 04–08 July 2018, pp. 3:1–3:20. ACM (2018). https://doi.org/10.1145/3282308.3282312

  16. Xu, X., et al.: A taxonomy of blockchain-based systems for architecture design. In: 2017 IEEE International Conference on Software Architecture, ICSA 2017, Gothenburg, Sweden, 3–7 April 2017, pp. 243–252. IEEE Computer Society (2017). https://doi.org/10.1109/ICSA.2017.33

  17. Zhao, Y., Kang, X., Li, T., Chu, C.K., Wang, H.: Towards trustworthy DeFi oracles: Past, present and future. IEEE Access (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Ellul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ellul, J., Pace, G.J. (2023). Verifiable External Blockchain Calls: Towards Removing Oracle Input Intermediaries. In: Garcia-Alfaro, J., Navarro-Arribas, G., Dragoni, N. (eds) Data Privacy Management, Cryptocurrencies and Blockchain Technology. DPM CBT 2022 2022. Lecture Notes in Computer Science, vol 13619. Springer, Cham. https://doi.org/10.1007/978-3-031-25734-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25734-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25733-9

  • Online ISBN: 978-3-031-25734-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics