Abstract
Automatic lineart colorization is a challenging task for Computer Vision. Contrary to grayscale images, linearts lack semantic information such as shading and texture, making the task even more difficult. Modern approaches train a Generative Adversarial Network (GAN) to generate illustrations from user inputs such as color hints. While such approaches can generate high-quality outputs in real-time, the user only interacts with the pipeline once at the beginning of the process. This paper presents StencilTorch, an interactive and user-guided framework for anime lineart colorization motivated by digital artist workflows. StencilTorch generates illustrations from a given lineart, color hints, and a mask allowing for iterative workflows where the output of the first pass becomes the input of a second. Our method improves previous work on both objective and subjective evaluations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anonymous, community, D., Branwen, G.: Danbooru 2020: A large-scale crowdsourced and tagged anime illustration dataset, January 2021. https://www.gwern.net/Danbooru2020
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 214–223. PMLR, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. https://proceedings.mlr.press/v70/arjovsky17a.html
Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48. ICML 2009, Association for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1553374.1553380
Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807 (2017). https://doi.org/10.1109/CVPR.2017.195
Ci, Y., Ma, X., Wang, Z., Li, H., Luo, Z.: User-guided deep anime line art colorization with conditional adversarial networks. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 1536–1544. MM 2018, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3240508.3240661
Elman, J.L.: Learning and development in neural networks: the importance of starting small. Cognition 48(1), 71–99 (1993)
Frans, K.: Outline colorization through tandem adversarial networks. CoRR abs/1704.08834 (2017). arxiv:1704.08834
Furusawa, C., Hiroshiba, K., Ogaki, K., Odagiri, Y.: Comicolorization: semi-automatic manga colorization. In: SIGGRAPH Asia 2017 Technical Briefs, SA 2017, Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3145749.3149430
Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, vol. 2, pp. 2672–2680. NIPS 2014, MIT Press, Cambridge, MA, USA (2014). https://dl.acm.org/doi/10.5555/2969033.2969125
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017), https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
Hacohen, G., Weinshall, D.: On the power of curriculum learning in training deep networks. In: Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9–15 June 2019, Long Beach, California, USA. Proceedings of Machine Learning Research, vol. 97, pp. 2535–2544. PMLR (2019). https://proceedings.mlr.press/v97/hacohen19a.html
Hati, Y., Jouet, G., Rousseaux, F., Duhart, C.: PaintsTorch: a user-guided anime line art colorization tool with double generator conditional adversarial network. In: European Conference on Visual Media Production. CVMP 2019, Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3359998.3369401
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016
Hensman, P., Aizawa, K.: CGAN-based manga colorization using a single training image. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 3, pp. 72–77. IEEE Computer Society, Los Alamitos, CA, USA, Nov 2017. https://doi.org/10.1109/ICDAR.2017.295, https://doi.ieeecomputersociety.org/10.1109/ICDAR.2017.295
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6629–6640. NIPS’17, Curran Associates Inc., Red Hook, NY, USA (2017)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 448–456. PMLR, Lille, France, 07–09 July 2015. https://proceedings.mlr.press/v37/ioffe15.html
Kandinsky, W., Sadleir, M.: Concerning the Spiritual in Art. Dover Publications, New York (1977). (oCLC: 3042682)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. CoRR abs/1710.10196 (2017). arxiv.org:1710.10196
Kim, H., Jhoo, H.Y., Park, E., Yoo, S.: Tag2pix: line art colorization using text tag with Secat and changing loss. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9055–9064 (2019). https://doi.org/10.1109/ICCV.2019.00915
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings (2014). arxiv.org:1312.6114
Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1 \(\times \) 1 convolutions. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)
Lim, J.H., Ye, J.C.: Geometric GAN (2017)
Liu, Y., Qin, Z., Wan, T., Luo, Z.: Auto-painter: cartoon image generation from sketch by using conditional Wasserstein generative adversarial networks. Neurocomputing 311, 78–87 (2018)
Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. CoRR abs/1711.05101 (2017). arxiv.org:1711.05101
Zhang, L., Ji, Y., Liu, C.: DanbooRegion: an illustration region dataset. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 137–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_9
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. CoRR abs/1802.05957 (2018). arxiv.org:1802.05957
Pixiv: Pelica Paint. https://petalica-paint.pixiv.dev/index_en.html (2017)
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip LATENTs. arXiv preprint arXiv:2204.06125 (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Saito, M., Matsui, Y.: Illustration2vec: a semantic vector representation of illustrations. In: SIGGRAPH Asia 2015 Technical Briefs, pp. 5:1–5:4. SA 2015, ACM, New York, NY, USA (2015). https://doi.org/10.1145/2820903.2820907
Sangkloy, P., Lu, J., Fang, C., Yu, F., Hays, J.: Scribbler: controlling deep image synthesis with sketch and color. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 6836–6845. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.723
Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). arxiv.org:1409.1556
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Winnemöller, H., Kyprianidis, J.E., Olsen, S.C.: XDOG: an extended difference-of-Gaussians compendium including advanced image stylization. Comput. Graph. 36(6), 740–753 (2012). https://doi.org/10.1016/j.cag.2012.03.004, www.sciencedirect.com/science/article/pii/S009784931200043X, 2011 Joint Symposium on Computational Aesthetics (CAe), Non-Photorealistic Animation and Rendering (NPAR), and Sketch-Based Interfaces and Modeling (SBIM)
Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5987–5995 (2017)
Zhang, L., Ji, Y., Lin, X., Liu, C.: Style transfer for anime sketches with enhanced residual u-net and auxiliary classifier GAN. In: 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), pp. 506–511 (2017). https://doi.org/10.1109/ACPR.2017.61
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
Zhang, R., et al.: Real-time user-guided image colorization with learned deep priors. ACM Trans. Graph. 36(4), 1–11 (2017). https://doi.org/10.1145/3072959.3073703
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hati, Y., Thevenin, V., Nolot, F., Rousseaux, F., Duhart, C. (2023). StencilTorch: An Iterative and User-Guided Framework for Anime Lineart Colorization. In: Yan, W.Q., Nguyen, M., Stommel, M. (eds) Image and Vision Computing. IVCNZ 2022. Lecture Notes in Computer Science, vol 13836. Springer, Cham. https://doi.org/10.1007/978-3-031-25825-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-25825-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25824-4
Online ISBN: 978-3-031-25825-1
eBook Packages: Computer ScienceComputer Science (R0)