Skip to main content

Detection and Tracking of Pinus Radiata Catkins

  • Conference paper
  • First Online:
Image and Vision Computing (IVCNZ 2022)

Abstract

Pinus Radiata trees form pollen-producing catkins that can be harvested for pharmaceutical uses. Unmanned Aerial Vehicles (UAVs) may be well suited to the task of autonomously harvesting these catkins. We propose a method to reliably detect and track P. Radiata catkins in three dimensions that can be used for real-time guidance of a UAV. The method applies the YOLOv5 deep learning algorithm to detect catkins in the X-Y plane. A novel optimisation of the MeanShift algorithm is utilised to assist existing contour detection algorithms in segmenting individual catkins in the Z plane. A Kanade-Lucas-Tomasi tracker was used with RANSAC for accurate frame-to-frame tracking. The method achieved a Mean Average Precision of 0.87 on images taken at a commercial pine pollen farm. The method detected the depth of catkins at distances of up to 1200 mm to an accuracy of 2 mm, or 8 mm for occluded catkins. Detected catkins can be reliably tracked at speeds of 1ms. An average frame rate of 22 frames per second was achieved on an Intel i5 CPU, with the Meanshift optimisation performing up to 41 times faster than existing implementations. These results indicate that the proposed method could be used to successfully assist in the automated harvesting of P. Radiata catkins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van der Colff, M., Kimberley, M.O.: A national height-age model for Pinus radiata in New Zealand. NZ J. Forest. Sci. 43(1), 4 (2013). https://doi.org/10.1186/1179-5395-43-4

    Article  Google Scholar 

  2. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002). https://doi.org/10.1109/34.1000236

    Article  Google Scholar 

  3. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  4. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN 0521540518

    Book  MATH  Google Scholar 

  5. Jocher, G., et al.: Marc, albinxavi, fatih, oleg, wanghaoyang0106: ultralytics/yolov5: v6.0 - YOLOv5n ‘Nano’ models, Roboflow integration, TensorFlow export, OpenCV DNN support (2021). https://doi.org/10.5281/zenodo.5563715

  6. Kuznetsova, A., Maleva, T., Soloviev, V.: Detecting apples in orchards using YOLOv3 and YOLOv5 in general and close-up images. In: Han, M., Qin, S., Zhang, N. (eds.) ISNN 2020. LNCS, vol. 12557, pp. 233–243. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64221-1_20

    Chapter  Google Scholar 

  7. Lin, G., Tang, Y., Zou, X., Xiong, J., Fang, Y.: Color-, depth-, and shape-based 3D fruit detection. Precis. Agric. 21(1), 1–17 (2019). https://doi.org/10.1007/s11119-019-09654-w

    Article  Google Scholar 

  8. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  9. Liu, T., Moore, A.W., Gray, A., Cardie, C.: New algorithms for efficient high-dimensional nonparametric classification. J. Mach. Learn. Res. 7(6) (2006)

    Google Scholar 

  10. Liu, X., et al.: Robust fruit counting: Combining deep learning, tracking, and structure from motion. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1045–1052 (2018). https://doi.org/10.1109/IROS.2018.8594239

  11. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision (IJCAI), vol. 81 (1981)

    Google Scholar 

  12. Luo, Z., Zhang, Y., Wang, K., Sun, L.: Detection of pine cones in natural environment using improved YOLOv4 deep learning algorithm. Comput. Intell. Neurosci. 2021, 1–12 (2021). https://doi.org/10.1155/2021/5601414

  13. Onishi, Y., Yoshida, T., Kurita, H., Fukao, T., Arihara, H., Iwai, A.: An automated fruit harvesting robot by using deep learning. ROBOMECH J. 6(1) (2019). https://doi.org/10.1186/s40648-019-0141-2

  14. Osco, L.P., et al.: A review on deep learning in UAV remote sensing. Int. J. Appl. Earth Obs. Geoinform. 102, 102456 (2021). https://doi.org/10.1016/j.jag.2021.102456. https://www.sciencedirect.com/science/article/pii/S030324342100163X

  15. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    Article  MathSciNet  Google Scholar 

  16. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  17. New Zealand’s forests. https://www.mpi.govt.nz/forestry/new-zealand-forests-forest-industry/new-zealands-forests/

  18. Roy, P., Isler, V.: Surveying apple orchards with a monocular vision system. In: 2016 IEEE International Conference on Automation Science and Engineering (CASE), pp. 916–921 (2016). https://doi.org/10.1109/COASE.2016.7743500

  19. SepúLveda, D., Fernández, R., Navas, E., Armada, M., González-De-Santos, P.: Robotic aubergine harvesting using dual-arm manipulation. IEEE Access 8, 121889–121904 (2020). https://doi.org/10.1109/ACCESS.2020.3006919

    Article  Google Scholar 

  20. Suzuki, S., Be, K.: Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7. https://www.sciencedirect.com/science/article/pii/0734189X85900167

  21. Williams, H., et al.: Improvements to and large-scale evaluation of a robotic kiwifruit harvester. J. Field Robot. 37(2), 187–201 (2019). https://doi.org/10.1002/rob.21890

    Article  Google Scholar 

  22. Xiao, W., Zaforemska, A., Smigaj, M., Wang, Y., Gaulton, R.: Mean shift segmentation assessment for individual forest tree delineation from airborne lidar data. Remote Sens. 11(11) (2019). https://doi.org/10.3390/rs11111263. https://www.mdpi.com/2072-4292/11/11/1263

  23. Yang, J., Rahardja, S., Fränti, P.: Mean-shift outlier detection and filtering. Pattern Recognit. 115, 107874 (2021). https://doi.org/10.1016/j.patcog.2021.107874. https://www.sciencedirect.com/science/article/pii/S0031320321000613

  24. Zhang, W., et al.: Deep-learning-based in-field citrus fruit detection and tracking. Hortic. Res. 9 (2022). https://doi.org/10.1093/hr/uhac003

Download references

Acknowledgements

The research reported in this article was conducted as part of “Enabling unmanned aerial vehicles (drones) to use tools in complex dynamic environments UOCX2104”, which is funded by the New Zealand Ministry of Business, Innovation and Employment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Schofield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, E., Schofield, S., Green, R. (2023). Detection and Tracking of Pinus Radiata Catkins. In: Yan, W.Q., Nguyen, M., Stommel, M. (eds) Image and Vision Computing. IVCNZ 2022. Lecture Notes in Computer Science, vol 13836. Springer, Cham. https://doi.org/10.1007/978-3-031-25825-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25825-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25824-4

  • Online ISBN: 978-3-031-25825-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics